北師大版數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
在我們的學(xué)習(xí)時(shí)代,大家都沒少背知識(shí)點(diǎn)吧?知識(shí)點(diǎn)也可以通俗的理解為重要的內(nèi)容。那么,都有哪些知識(shí)點(diǎn)呢?以下是小編整理的北師大版數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
測(cè)量
1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相鄰單位之間的進(jìn)率是“10”;
2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;
3、長(zhǎng)度單位比較大小,首先要觀察單位,換成統(tǒng)一的單位之后才能比較;
4、長(zhǎng)度單位的加減法,米加米,分米加分米.......就是把相同的單位進(jìn)行加減。
加與減
1、口算整百加減整百時(shí),想成幾個(gè)百加減幾個(gè)百,加減整十?dāng)?shù)的算理也相同。
2、計(jì)算時(shí)要注意:
(1)、相同數(shù)位要對(duì)齊,從個(gè)位算起。
。2)、計(jì)算加法時(shí),哪一位相加滿十,要向前一位“進(jìn)一”。
。3)、計(jì)算減法時(shí),哪一位不夠減時(shí),要向前一位“借1”,但是不要忘記退位時(shí)要減1;
3、在估算中,如果估算到百位,就看十位數(shù)是多少,如果十位上的數(shù)大于5,則百位進(jìn)1,十位和個(gè)位舍去,變?yōu)?,如估算678,就變?yōu)?00;如果十位上的數(shù)小于5,則百位不變,十位和個(gè)位舍去,變?yōu)?,如估算607,就變?yōu)?00;
4、加數(shù)+加數(shù)=和一個(gè)加數(shù)=和-另一個(gè)加數(shù)如:()+156=368(用368-156計(jì)算)280+()=760(用760-280計(jì)算)
5、被減數(shù)-減數(shù)=差被減數(shù)=減數(shù)+差減數(shù)=被減數(shù)-差如:()-156=368(用156+368計(jì)算)
980-()=760(用980-760計(jì)算)
6、加法的驗(yàn)算方法:
。1)交換加數(shù)的位置,看和是否相同,
。2)用和減去其中一個(gè)加數(shù),看是否等于另一個(gè)加數(shù);
7、減法的驗(yàn)算方法:
。1)用被減數(shù)減去差,看結(jié)果是否等于減數(shù),
。2)用減數(shù)加上差,看結(jié)果是否等于被減數(shù)。
注意:運(yùn)算時(shí)不要抄錯(cuò)數(shù),也不要直接把驗(yàn)算結(jié)果抄上。
認(rèn)識(shí)角
1、每個(gè)角都是由1個(gè)頂點(diǎn)和2條邊組成;
2、按角的大小,將角分為銳角、直角、鈍角,所有的直角都相等,比直角小的是銳角,比直角大的是鈍角。要知道一個(gè)角是什么角,可以用三角板上的直角比一比。
3、比較角的大小時(shí)要注意:角的大小與邊的長(zhǎng)短無關(guān),與角的張口大小有關(guān),張口越大角就越大;
4、正方形有四個(gè)直角,四條邊都相等;長(zhǎng)方形有四條邊,四個(gè)直角,長(zhǎng)方形的對(duì)邊相等;
5、平行四邊形有四條邊,有2個(gè)銳角,2個(gè)鈍角,對(duì)邊相等,對(duì)角相等。
時(shí)、分、秒
1、鐘面上有12個(gè)大格,每個(gè)大格里有5個(gè)小格,一共有60個(gè)小格;
2、秒針走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分鐘;
3、分針走一小格是1分,走一大格是5分,走一圈是60分,也就是1小時(shí);
4、時(shí)針走一大格是1小時(shí),走一圈是12小時(shí);
5、時(shí)、分、秒相鄰單位的進(jìn)率是60;
1時(shí)=60分1分=60秒6、比較時(shí)間,首先要觀察,統(tǒng)一單位之后再比較大小。
7、時(shí)間的加減:分減分,時(shí)減時(shí),當(dāng)分不夠減時(shí),要向前一位借1,化成60,再相加減;
統(tǒng)計(jì)
記錄并學(xué)會(huì)計(jì)算,誰多,誰少。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
一、分?jǐn)?shù)除法的意義和分?jǐn)?shù)除以整數(shù)
知識(shí)點(diǎn)一:分?jǐn)?shù)除法的意義
整數(shù)除法的意義:已知兩個(gè)因數(shù)的積與其中一個(gè)因數(shù),求另一個(gè)因數(shù)的運(yùn)算。
知識(shí)點(diǎn)二:分?jǐn)?shù)除以整數(shù)的計(jì)算方法
把一個(gè)數(shù)平均分成整數(shù)份,求其中的幾份就是求這個(gè)數(shù)的幾分之幾是多少。
分?jǐn)?shù)除以整數(shù)(0除外)的計(jì)算方法:
。1)用分子和整數(shù)相除的商做分子,分母不變。
。2)分?jǐn)?shù)除以整數(shù),等于分?jǐn)?shù)乘這個(gè)整數(shù)的倒數(shù)。
二、一個(gè)數(shù)除以分?jǐn)?shù)
知識(shí)點(diǎn)一:一個(gè)數(shù)除以分?jǐn)?shù)的計(jì)算方法
一個(gè)數(shù)除以分?jǐn)?shù),等于這個(gè)數(shù)乘分?jǐn)?shù)的倒數(shù)。
知識(shí)點(diǎn)二:分?jǐn)?shù)除法的統(tǒng)一計(jì)算法則
甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。
知識(shí)點(diǎn)三:商與被除數(shù)的大小關(guān)系
一個(gè)數(shù)(0除外)除以小于1的數(shù),商大于被除數(shù),除以1,商等于被除數(shù),除以大于1的數(shù),商小于被除數(shù)。0除以任何數(shù)商都為0。
三、分?jǐn)?shù)除法的混合運(yùn)算
知識(shí)點(diǎn)一:分?jǐn)?shù)除加、除減的運(yùn)算順序
除加、除減混合運(yùn)算,如果沒有括號(hào),先算除法,后算加減。
知識(shí)點(diǎn)二:連除的計(jì)算方法
分?jǐn)?shù)連除,可以分步轉(zhuǎn)化為乘法計(jì)算,也可以一次都轉(zhuǎn)化為乘法再計(jì)算,能約分的要約分。
知識(shí)點(diǎn)三:不含括號(hào)的分?jǐn)?shù)混合運(yùn)算的運(yùn)算順序
在一個(gè)分?jǐn)?shù)混合運(yùn)算的算式里,如果只含有同一級(jí)運(yùn)算,按照從左到右的順序計(jì)算;如果含有兩級(jí)運(yùn)算,先算第二級(jí)運(yùn)算,再算第一級(jí)運(yùn)算。
知識(shí)點(diǎn)四:含有括號(hào)的分?jǐn)?shù)混和運(yùn)算的運(yùn)算順序
在一個(gè)分?jǐn)?shù)混合運(yùn)算的算式里,如果既有小括號(hào)又有中括號(hào),要先算小括號(hào)里面的,再算中括號(hào)里面的。
知識(shí)點(diǎn)五:整數(shù)的運(yùn)算定律在分?jǐn)?shù)混和運(yùn)算中的運(yùn)用
分?jǐn)?shù)除法的意義與整數(shù)除法的意義相同,都是已知兩個(gè)因數(shù)的積與其中一個(gè)因數(shù)求另一個(gè)因數(shù)。被除數(shù)分子乘除數(shù)分母,被除數(shù)分母乘除數(shù)分子。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
1、小數(shù)除法的意義:已知兩個(gè)因數(shù)的積與其中的一個(gè)因數(shù),求另一個(gè)因數(shù)的運(yùn)算。如:2.6÷1.3表示已知兩個(gè)因數(shù)的積2.6與其中的一個(gè)因數(shù)1.3,求另一個(gè)因數(shù)的運(yùn)算。
小數(shù)除法的計(jì)算方法:
計(jì)算除數(shù)是整數(shù)的小數(shù)除法,按整數(shù)除法的計(jì)算方法去除,商的小數(shù)點(diǎn)要和被除數(shù)的小數(shù)點(diǎn)對(duì)齊,整數(shù)部分不夠除,商0,點(diǎn)上小數(shù)點(diǎn),繼續(xù)除;如果有余數(shù),要添0再除。
計(jì)算除數(shù)是小數(shù)的除法,先把除數(shù)轉(zhuǎn)化成整數(shù),除數(shù)的小數(shù)點(diǎn)向右移動(dòng)幾位,被除數(shù)的小數(shù)點(diǎn)也要向右移動(dòng)幾位,位數(shù)不夠時(shí),在被除數(shù)的末尾用0補(bǔ)足,然后按照除數(shù)是整數(shù)的小數(shù)除法進(jìn)行計(jì)算。
2、取近似數(shù)的方法:
取近似數(shù)的方法有三種
、偎纳嵛迦敕
、谶M(jìn)一法
③去尾法
一般情況下,按要求取近似數(shù)時(shí)用四舍五入法,進(jìn)一法、去尾法在解決實(shí)際問題的時(shí)候選擇應(yīng)用。
取商的近似數(shù)時(shí),保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似數(shù)。沒有要求時(shí),除不盡的一般保留兩位小數(shù)。
3、循環(huán)小數(shù):一個(gè)數(shù)的小數(shù)部分,從某一位起,一個(gè)數(shù)字或者幾個(gè)數(shù)字依次不斷重復(fù)出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。依次不斷重復(fù)出現(xiàn)的數(shù)字,叫做這個(gè)循環(huán)小數(shù)的的循環(huán)節(jié)。
4、循環(huán)小數(shù)的表示方法:
一種是用省略號(hào)表示,要寫出兩個(gè)完整的循環(huán)節(jié),后面標(biāo)上省略號(hào)。如:0.3636…… 1.587587……
另一種是簡(jiǎn)寫的方法:即只寫出一組循環(huán)節(jié),然后在循環(huán)節(jié)的第一個(gè)數(shù)字和最后一個(gè)數(shù)上面點(diǎn)上圓點(diǎn)。如:12。
5、有限小數(shù):小數(shù)部分的位數(shù)是有限的小數(shù),叫做有限小數(shù)。
6、無限小數(shù):小數(shù)部分的位數(shù)是無限的小數(shù),叫做無限小數(shù)。
小學(xué)數(shù)學(xué)單位間進(jìn)率知識(shí)點(diǎn):
1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
1噸=1000千克1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米1畝=666。666平方米
1升=1立方分米=1000毫升1毫升=1立方厘米
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
1.平均分的含義:把一些物品分成幾份,每份分得同樣多,叫做平均分。
除法就是用來解決平均分問題的。
2.平均分里有兩種情況:
(1)把一些東西平均分成幾份,求每份是多少;用除法計(jì)算,
總數(shù)÷份數(shù)=每份數(shù)
(2)包含除(求一個(gè)數(shù)里面有幾個(gè)幾)把一個(gè)數(shù)量按每份是多少分成一份,求能平均分成幾份;用除法計(jì)算,總數(shù)÷每份數(shù)=份數(shù)
3、除法算式的讀法:從左到右的順序讀,“÷”讀作除以,“=”讀作等于,其他數(shù)字不變。
除法算式各部分名稱:在除法算式中,除號(hào)前面的數(shù)就被除數(shù),除號(hào)后面的數(shù)叫除數(shù),所得的數(shù)叫商。
被除數(shù)÷除數(shù)=商。
被除數(shù)÷商=除數(shù)
除數(shù)×商=被除數(shù)。
4.用2~6的乘法口訣求商
1、求商的方法:
(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口訣求商。
2、用乘法口訣求商時(shí),想除數(shù)和幾相乘的被除數(shù)。
一句口訣可以寫四個(gè)算式。(乘數(shù)相同的除外)。
5、解決問題
解決有關(guān)平均分問題的方法:
總數(shù)÷每份數(shù)=份數(shù)總數(shù)÷份數(shù)=每份數(shù)
用乘法和除法兩步計(jì)算解決實(shí)際問題的方法:
(1)所求問題要求求出總數(shù),用乘法計(jì)算;
(2)所求問題要求求出份數(shù)或每份數(shù),用除法計(jì)算。
第三單元圖形的運(yùn)動(dòng)
1、軸對(duì)稱圖形:沿一條直線對(duì)折,兩邊完全重合。對(duì)折后能夠完全重合的圖形是軸對(duì)稱圖形,折痕所在的直線叫對(duì)稱軸。(剪紙游戲)
成軸對(duì)稱圖形的字母:
ABCDEHIKMOTUVWXY
2、平移:當(dāng)物體水平方向或豎直方向運(yùn)動(dòng),并且物體的方向不發(fā)生改變,這種運(yùn)動(dòng)是平移。只有形狀、大小、方向完全相同的圖形通過平移才能互相重合。平移只能上下移動(dòng)或左右移動(dòng)。
3、旋轉(zhuǎn):體繞著某一點(diǎn)或軸進(jìn)行圓周運(yùn)動(dòng)的現(xiàn)象就是旋轉(zhuǎn)。例如:旋轉(zhuǎn)木馬、轉(zhuǎn)動(dòng)的風(fēng)扇、轉(zhuǎn)動(dòng)的車輪等。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
一、導(dǎo)數(shù)的應(yīng)用
1、用導(dǎo)數(shù)研究函數(shù)的最值
確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。
學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來檢驗(yàn)下學(xué)習(xí)成果。
2、生活中常見的函數(shù)優(yōu)化問題
1)費(fèi)用、成本最省問題
2)利潤(rùn)、收益最大問題
3)面積、體積最(大)問題
二、推理與證明
1、歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過兩類對(duì)象已知的相似特征得出所需要的相似特征。
2、類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。
三、不等式
對(duì)于含有參數(shù)的一元二次不等式解的討論
1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。
2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進(jìn)行分類討論。
通過不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結(jié)出來。
四、坐標(biāo)平面上的直線
1、內(nèi)容要目:直線的點(diǎn)方向式方程、直線的點(diǎn)法向式方程、點(diǎn)斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點(diǎn)到直線的距離,兩直線的夾角以及兩平行線之間的距離。
2、基本要求:掌握求直線的方法,熟練轉(zhuǎn)化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線、直線與直線的不同位置,能正確求點(diǎn)到直線的距離、兩直線的交點(diǎn)坐標(biāo)及兩直線的夾角大小。
3、重難點(diǎn):初步建立代數(shù)方法解決幾何問題的觀念,正確將幾何條件與代數(shù)表示進(jìn)行轉(zhuǎn)化,定量地研究點(diǎn)與直線、直線與直線的位置關(guān)系。根據(jù)兩個(gè)獨(dú)立條件求出直線方程。熟練運(yùn)用待定系數(shù)法。
五、圓錐曲線
1、內(nèi)容要目:直角坐標(biāo)系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標(biāo)準(zhǔn)方程及圓的一般方程。橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及它們的性質(zhì)。
2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法判斷定點(diǎn)是否在曲線
上及求曲線的交點(diǎn)。掌握?qǐng)A、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標(biāo)。利用直線和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應(yīng)的幾何問題。
3、重難點(diǎn):建立數(shù)形結(jié)合的概念,理解曲線與方程的對(duì)應(yīng)關(guān)系,掌握代數(shù)研究幾何的方法,掌握把已知條件轉(zhuǎn)化為等價(jià)的代數(shù)表示,通過代數(shù)方法解決幾何問題。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
圓周角知識(shí)點(diǎn)
1、定義:頂點(diǎn)在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)
2、定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半。
3、推論:1)在同圓或等圓中,相等的圓周角所對(duì)的弧相等。
2)直徑(半圓)所對(duì)的圓周角是直角;900的圓周角所對(duì)的弦為直徑。(①常見輔助線:有直徑可構(gòu)成直角,有900圓周角可構(gòu)成直徑;②找圓心的方法:作兩個(gè)900圓周角所對(duì)兩弦交點(diǎn))
4、圓內(nèi)接四邊形的性質(zhì)定理:圓內(nèi)接四邊形的對(duì)角互補(bǔ)。(任意一個(gè)外角等于它的內(nèi)對(duì)角)
補(bǔ)充:1、兩條平行弦所夾的弧相等。
2、圓的兩條弦1)在圓外相交時(shí),所夾角等于它所對(duì)的兩條弧度數(shù)差的一半。2)在圓內(nèi)相交時(shí),所夾的角等于它所夾兩條弧度數(shù)和的一半。
3、同弧所對(duì)的(在弧的同側(cè))圓內(nèi)部角其次是圓周角,最小的是圓外角。
平均數(shù)中位數(shù)與眾數(shù)知識(shí)點(diǎn)
1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.
2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.
3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.
有理數(shù)知識(shí)點(diǎn)
1.大于0的數(shù)叫做正數(shù)。
2.在正數(shù)前面加上負(fù)號(hào)“-”的數(shù)叫做負(fù)數(shù)。
3.整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù)。
4.人們通常用一條直線上的點(diǎn)表示數(shù),這條直線叫做數(shù)軸。
5.在直線上任取一個(gè)點(diǎn)表示數(shù)0,這個(gè)點(diǎn)叫做原點(diǎn)。
6.一般的,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值。
7.由絕對(duì)值的定義可知:
一個(gè)正數(shù)的絕對(duì)值是它本身;
一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);
0的絕對(duì)值是0。
8.正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。
9.兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
10.有理數(shù)加法法則:
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。
(2)絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的負(fù)號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值,互為相反數(shù)的兩個(gè)數(shù)相加得0。
(3)一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
11.有理數(shù)的加法中,兩個(gè)數(shù)相加,交換交換加數(shù)的位置,和不變。
12.有理數(shù)的加法中,三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。
13.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
14.有理數(shù)乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值向乘。任何數(shù)同0相乘,都得0。
15.有理數(shù)中仍然有:乘積是1的兩個(gè)數(shù)互為倒數(shù)。
16.一般的,有理數(shù)乘法中,兩個(gè)數(shù)相乘,交換因數(shù)的位置,積相等。
17.三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積相等。
18.一般地,一個(gè)數(shù)同兩個(gè)數(shù)的和相乘,等于把這個(gè)數(shù)分別同這兩個(gè)數(shù)相乘,再把積相加。
19.有理數(shù)除法法則:除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。
20.兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。0除以任何一個(gè)不等于0的數(shù),都得0。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
【數(shù)學(xué)公式】
數(shù)量關(guān)系計(jì)算公式
1、單價(jià)×數(shù)量=總價(jià)
2、單產(chǎn)量×數(shù)量=總產(chǎn)量
3、速度×?xí)r間=路程
4、工效×?xí)r間=工作總量
5、加數(shù)+加數(shù)=和
6、一個(gè)加數(shù)=和—另一個(gè)加數(shù)
7、被減數(shù)—減數(shù)=差
8、減數(shù)=被減數(shù)—差
9、被減數(shù)=減數(shù)+差
10、因數(shù)×因數(shù)=積
11、一個(gè)因數(shù)=積÷另一個(gè)因數(shù)
12、被除數(shù)÷除數(shù)=商
13、除數(shù)=被除數(shù)÷商
14、被除數(shù)=商×除數(shù)
15、有余數(shù)的除法:被除數(shù)=商×除數(shù)+余數(shù)
一個(gè)數(shù)連續(xù)用兩個(gè)數(shù)除,可以先把后兩個(gè)數(shù)相乘,再用它們的積去除這個(gè)數(shù),結(jié)果不變。例:90÷5÷6=90÷(5×6)
1公里=1千米
1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
1平方米=100平方分米
1平方分米=100平方厘米
【珠算讀寫數(shù)】
小小珠算真神奇,讀數(shù)寫數(shù)最容易。
四位一級(jí)是關(guān)鍵,讀寫都從高位起。
級(jí)前中0讀一個(gè),級(jí)末有0不讀起。
億級(jí)萬級(jí)仿個(gè)級(jí),讀完后面加單位。
一級(jí)一級(jí)往下寫,珠不靠梁0占位。
【多位數(shù)的大小比較】
多位數(shù)大小看位數(shù),位數(shù)多的數(shù)就大。
位數(shù)相同看高位,高位數(shù)大數(shù)就大。
【分?jǐn)?shù)大小的比較】
分?jǐn)?shù)大小的比較,分子、分母要記好。
分母相同看分子,分子大的分?jǐn)?shù)大。
分子相同看分母,分母大的分?jǐn)?shù)小。
【列方程解應(yīng)用題】
列方程解應(yīng)用題,抓住關(guān)鍵去分析。
已知條件換成數(shù),未知條件換字母。
找齊相關(guān)代數(shù)式,連接起來讀一讀。
【計(jì)量單位對(duì)口歌】
小朋友,快排隊(duì),手拉手對(duì)單位?凑l說得快又對(duì)。
人民幣單位元、角、分,進(jìn)率是10要牢記。
1元得10角,1角得10分,1元等于100分。
米、分米、厘米和毫米。
單位是千米。
1米=10分米,1分米=10厘米,1厘米=10毫米。
米和千米也相臨,進(jìn)率1000是特例。
噸與千克還有克,進(jìn)率1000要牢記。
形體單位更容易,相臨100是面積,相臨1000是體積。
大單位,小單位,大小換算有規(guī)律。
從大到小乘進(jìn)率,小數(shù)點(diǎn)向右移;從小到大除以進(jìn)率,小數(shù)點(diǎn)向左移。
進(jìn)率是10移一位,進(jìn)率100移兩位,進(jìn)率1000移三位。以此類推。
【分解質(zhì)因數(shù)】
分解質(zhì)因數(shù),方法是短除。
除數(shù)是質(zhì)數(shù),商也是質(zhì)數(shù)。
表示的形式很簡(jiǎn)單:合數(shù)=質(zhì)數(shù)×質(zhì)數(shù)
公約數(shù)、公倍數(shù)與互質(zhì)數(shù)
公約數(shù),公倍數(shù),關(guān)鍵要把“公”記住。
公有的約數(shù)叫做公約數(shù),公約數(shù)中的,就叫公約數(shù)。
如果公約數(shù)只有1,它們就叫互質(zhì)數(shù)。
公有的倍數(shù)叫做公倍數(shù)。公倍數(shù)中最小的,就叫最小公倍數(shù)。
求法有區(qū)別,千萬別失誤。
短除只把除數(shù)乘,是求公約數(shù)。
除數(shù)和商要連乘,是求最小公倍數(shù)。
【垂直平分線定理】
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上
【基本函數(shù)有哪些】
正弦:sine余弦:cosine(簡(jiǎn)寫cos)
正切:tangent(簡(jiǎn)寫tan)
余切:cotangent(簡(jiǎn)寫cot)
正割:secant(簡(jiǎn)寫sec)
余割:cosecant(簡(jiǎn)寫csc)
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
時(shí)分秒
1、鐘面上有3根針,它們是(時(shí)針)、(分針)、(秒針),其中走得快的是(秒針),走得慢的是(時(shí)針)。
2、鐘面上有(12)個(gè)數(shù)字,(12)個(gè)大格,(60)個(gè)小格;每?jī)蓚(gè)數(shù)間是(1)個(gè)大格,也就是(5)個(gè)小格。
3、時(shí)針走1大格是(1)小時(shí);分針走1大格是(5)分鐘,走1小格是(1)分鐘;秒針走1大格是(5)秒鐘,走1小格是(1)秒鐘。
4、時(shí)針走1大格,分針正好走(1)圈,分針走1圈是(60)分,也就是(1)小時(shí)。時(shí)針走1圈,分針要走(12)圈。
5、分針走1小格,秒針正好走(1)圈,秒針走1圈是(60)秒,也就是(1)分鐘。
6、時(shí)針從一個(gè)數(shù)走到下一個(gè)數(shù)是(1小時(shí))。分針從一個(gè)數(shù)走到下一個(gè)數(shù)是(5分鐘)。秒針從一個(gè)數(shù)走到下一個(gè)數(shù)是(5秒鐘)。
7、鐘面上時(shí)針和分針正好成直角的時(shí)間有:(3點(diǎn)整)、(9點(diǎn)整)。
8、公式。(每?jī)蓚(gè)相鄰的時(shí)間單位之間的進(jìn)率是60)
1時(shí)=60分1分=60秒
半時(shí)=30分60分=1時(shí)
60秒=1分30分=半時(shí)
測(cè)量
1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長(zhǎng)的物體,常用(米)做單位;測(cè)量比較長(zhǎng)的路程一般用(千米)做單位,千米也叫(公里)。
2、1厘米的長(zhǎng)度里有(10)小格,每小格的長(zhǎng)度(相等),都是(1)毫米。
3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。
4、在計(jì)算長(zhǎng)度時(shí),只有相同的長(zhǎng)度單位才能相加減。
小技巧:換算長(zhǎng)度單位時(shí),把大單位換成小單位就在數(shù)字的末尾添加0(關(guān)系式中有幾個(gè)0,就添幾個(gè)0);把小單位換成大單位就在數(shù)字的末尾去掉0(關(guān)系式中有幾個(gè)0,就去掉幾個(gè)0)。
5、長(zhǎng)度單位的關(guān)系式有:(每?jī)蓚(gè)相鄰的長(zhǎng)度單位之間的進(jìn)率是10)
、龠M(jìn)率是10:
1米=10分米,1分米=10厘米,
1厘米=10毫米,10分米=1米,
10厘米=1分米,10毫米=1厘米,
②進(jìn)率是100:
1米=100厘米,1分米=100毫米,
100厘米=1米,100毫米=1分米
、圻M(jìn)率是1000:
1千米=1000米,1公里==1000米,
1000米=1千米,1000米=1公里
6、當(dāng)我們表示物體有多重時(shí),通常要用到(質(zhì)量單位)。在生活中,稱比較輕的物品的質(zhì)量,可以用(克)做單位;稱一般物品的質(zhì)量,常用(千克)做單位;計(jì)量較重的或大宗物品的質(zhì)量,通常用(噸)做單位。
小技巧:在“噸”與“千克”的換算中,把噸換算成千克,是在數(shù)字的末尾加上3個(gè)0;
把千克換算成噸,是在數(shù)字的末尾去掉3個(gè)0。
7、相鄰兩個(gè)質(zhì)量單位進(jìn)率是1000。
1噸=1000千克1千克=1000克
1000千克=1噸1000克=1千克
倍的認(rèn)識(shí)
1、求一個(gè)數(shù)是另一個(gè)數(shù)的幾倍用除法:一個(gè)數(shù)÷另一個(gè)數(shù)=倍數(shù)
2、求一個(gè)數(shù)的幾倍是多少用乘法:這個(gè)數(shù)×倍數(shù)=這個(gè)數(shù)的幾倍
多位數(shù)乘一位數(shù)
1、估算。(先求出多位數(shù)的近似數(shù),再進(jìn)行計(jì)算。如497×7≈3500)
2、①0和任何數(shù)相乘都得0;②1和任何不是0的數(shù)相乘還得原來的數(shù)。
3、因數(shù)末尾有幾個(gè)0,就在積的末尾添上幾個(gè)0。
4、三位數(shù)乘一位數(shù):積有可能是三位數(shù),也有可能是四位數(shù)。
公式:速度×?xí)r間=路程
每節(jié)車廂的人數(shù)×車廂的數(shù)量=全車的人數(shù)
5、(關(guān)于“大約)應(yīng)用題:
、贄l件中出現(xiàn)“大約”,而問題中沒有“大約”,求準(zhǔn)確數(shù)!(=)
、跅l件中沒有,而問題中出現(xiàn)“大約”。求近似數(shù),用估算!(≈)
、蹢l件和問題中都有“大約”,求近似數(shù),用估算!(≈)
四邊形
1、有4條直的邊和4個(gè)角封閉圖形我們叫它四邊形。
2、四邊形的特點(diǎn):有四條直的邊,有四個(gè)角。
3、長(zhǎng)方形的特點(diǎn):長(zhǎng)方形有兩條長(zhǎng),兩條寬,四個(gè)直角,對(duì)邊相等。
4、正方形的特點(diǎn):有4個(gè)直角,4條邊相等。
5、長(zhǎng)方形和正方形是特殊的平行四邊形。
6、平行四邊形的特點(diǎn):
、賹(duì)邊相等、對(duì)角相等。
②平行四邊形容易變形。(三角形不容易變形)
7、封閉圖形一周的長(zhǎng)度,就是它的周長(zhǎng)。
8、公式。
正方形的周長(zhǎng)=邊長(zhǎng)×4
正方形的邊長(zhǎng)=周長(zhǎng)÷4,
長(zhǎng)方形的周長(zhǎng)=(長(zhǎng)+寬)×2
長(zhǎng)方形的長(zhǎng)=周長(zhǎng)÷2-寬,
長(zhǎng)方形的寬=周長(zhǎng)÷2-長(zhǎng)
分?jǐn)?shù)的初步認(rèn)識(shí)
1、把一個(gè)物體或一個(gè)圖形平均分成幾份,取其中的幾份,就是這個(gè)物體或圖形的幾分之幾。
2、把一個(gè)整體平均分得的份數(shù)越多,它的每一份所表示的數(shù)就越小。
3、①分子相同,分母小的分?jǐn)?shù)反而大,分母大的分?jǐn)?shù)反而小。
②分母相同,分子大的分?jǐn)?shù)就大,分子小的分?jǐn)?shù)就小。
4、①相同分母的分?jǐn)?shù)相加、減:分母不變,只和分子相加、減。
、1與分?jǐn)?shù)相減:1可以看作是與減數(shù)分母相同的,同分子分母的分?jǐn)?shù)
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
圓的方程
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。
2、圓的方程
(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
。2)一般方程
當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為
當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。
。3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。
高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié):直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
。1)設(shè)直線,圓,圓心到l的距離為,則有;;
。2)過圓外一點(diǎn)的切線:
、賙不存在,驗(yàn)證是否成立
、趉存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
。3)過圓上一點(diǎn)的切線方程:圓(x—a)2+(y—b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0—a)(x—a)+(y0—b)(y—b)=r2
4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設(shè)圓,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;
當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;
當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。
注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
5、空間點(diǎn)、直線、平面的位置關(guān)系
公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。
應(yīng)用:判斷直線是否在平面內(nèi)
用符號(hào)語言表示公理1:
公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線
符號(hào):平面α和β相交,交線是a,記作α∩β=a。
符號(hào)語言:
公理2的作用:
、偎桥卸▋蓚(gè)平面相交的方法。
②它說明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過公共點(diǎn)。
③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。
公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。
推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理3及其推論作用:
、偎强臻g內(nèi)確定平面的依據(jù)
②它是證明平面重合的依據(jù)
公理4:平行于同一條直線的兩條直線互相平行
空間直線與直線之間的位置關(guān)系
、佼惷嬷本定義:不同在任何一個(gè)平面內(nèi)的兩條直線
、诋惷嬷本性質(zhì):既不平行,又不相交。
、郛惷嬷本判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線
④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。
求異面直線所成角步驟:
A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來求角
。7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。
。8)空間直線與平面之間的位置關(guān)系
直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)。
三種位置關(guān)系的符號(hào)表示:aαa∩α=Aa‖α
。9)平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);α‖β
相交——有一條公共直線。α∩β=b
6、空間中的平行問題
。1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。
線線平行線面平行
線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,
那么這條直線和交線平行。線面平行線線平行
(2)平面與平面平行的判定及其性質(zhì)
兩個(gè)平面平行的判定定理
。1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行
。ň面平行→面面平行),
。2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。
(線線平行→面面平行),
。3)垂直于同一條直線的兩個(gè)平面平行,
兩個(gè)平面平行的性質(zhì)定理
(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)
。2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)
7、空間中的垂直問題
(1)線線、面面、線面垂直的定義
、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
、诰面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說這條直線和這個(gè)平面垂直。
、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個(gè)平面垂直。
。2)垂直關(guān)系的判定和性質(zhì)定理
①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。
性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。
、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。
性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。
8、空間角問題
(1)直線與直線所成的角
、賰善叫兄本所成的角:規(guī)定為。
、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。
、蹆蓷l異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。
。2)直線和平面所成的角
①平面的平行線與平面所成的角:規(guī)定為。
、谄矫娴拇咕與平面所成的角:規(guī)定為。
、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。
在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,
在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:
。1)斜線上一點(diǎn)到面的垂線;
。2)過斜線上的一點(diǎn)或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。
。3)二面角和二面角的平面角
①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。
、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼恰
兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過來,如果兩個(gè)平面垂直,那么所成的二面角為直二面角
、芮蠖娼堑姆椒
定義法:在棱上選擇有關(guān)點(diǎn),過這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角
垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
一、相似三角形(7個(gè)考點(diǎn))
考點(diǎn)1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小
考核要求:(1)理解相似形的概念;(2)掌握相似圖形的特點(diǎn)以及相似比的意義,能將已知圖形按照要求放大和縮小.
考點(diǎn)2:平行線分線段成比例定理、三角形一邊的平行線的有關(guān)定理
考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計(jì)算.
注意:被判定平行的一邊不可以作為條件中的對(duì)應(yīng)線段成比例使用.
考點(diǎn)3:相似三角形的概念
考核要求:以相似三角形的概念為基礎(chǔ),抓住相似三角形的特征,理解相似三角形的定義.
考點(diǎn)4:相似三角形的判定和性質(zhì)及其應(yīng)用
考核要求:熟練掌握相似三角形的判定定理(包括預(yù)備定理、三個(gè)判定定理、直角三角形相似的判定定理)和性質(zhì),并能較好地應(yīng)用.
考點(diǎn)5:三角形的重心
考核要求:知道重心的定義并初步應(yīng)用.
考點(diǎn)6:向量的有關(guān)概念
考點(diǎn)7:向量的加法、減法、實(shí)數(shù)與向量相乘、向量的線性運(yùn)算
考核要求:掌握實(shí)數(shù)與向量相乘、向量的線性運(yùn)算
二、銳角三角比(2個(gè)考點(diǎn))
考點(diǎn)8:銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.
考點(diǎn)9:解直角三角形及其應(yīng)用
考核要求:(1)理解解直角三角形的意義;(2)會(huì)用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡(jiǎn)單的實(shí)際問題,尤其應(yīng)當(dāng)熟練運(yùn)用特殊銳角的三角比的值解直角三角形.
三、二次函數(shù)(4個(gè)考點(diǎn))
考點(diǎn)10:函數(shù)以及函數(shù)的定義域、函數(shù)值等有關(guān)概念,函數(shù)的表示法,常值函數(shù)
考核要求:(1)通過實(shí)例認(rèn)識(shí)變量、自變量、因變量,知道函數(shù)以及函數(shù)的定義域、函數(shù)值等概念;(2)知道常值函數(shù);(3)知道函數(shù)的表示方法,知道符號(hào)的意義.
考點(diǎn)11:用待定系數(shù)法求二次函數(shù)的解析式
考核要求:(1)掌握求函數(shù)解析式的方法;(2)在求函數(shù)解析式中熟練運(yùn)用待定系數(shù)法.
注意求函數(shù)解析式的步驟:一設(shè)、二代、三列、四還原.
考點(diǎn)12:畫二次函數(shù)的圖像
考核要求:(1)知道函數(shù)圖像的意義,會(huì)在平面直角坐標(biāo)系中用描點(diǎn)法畫函數(shù)圖像;(2)理解二次函數(shù)的圖像,體會(huì)數(shù)形結(jié)合思想;(3)會(huì)畫二次函數(shù)的大致圖像.
考點(diǎn)13:二次函數(shù)的圖像及其基本性質(zhì)
考核要求:(1)借助圖像的直觀、認(rèn)識(shí)和掌握一次函數(shù)的性質(zhì),建立一次函數(shù)、二元一次方程、直線之間的聯(lián)系;(2)會(huì)用配方法求二次函數(shù)的頂點(diǎn)坐標(biāo),并說出二次函數(shù)的有關(guān)性質(zhì).
注意:(1)解題時(shí)要數(shù)形結(jié)合;(2)二次函數(shù)的平移要化成頂點(diǎn)式.
四、圓的相關(guān)概念(6個(gè)考點(diǎn))
考點(diǎn)14:圓心角、弦、弦心距的概念
考核要求:清楚地認(rèn)識(shí)圓心角、弦、弦心距的概念,并會(huì)用這些概念作出正確的判斷.
考點(diǎn)15:圓心角、弧、弦、弦心距之間的關(guān)系
考核要求:認(rèn)清圓心角、弧、弦、弦心距之間的關(guān)系,在理解有關(guān)圓心角、弧、弦、弦心距之間的關(guān)系的定理及其推論的基礎(chǔ)上,運(yùn)用定理進(jìn)行初步的幾何計(jì)算和幾何證明.
考點(diǎn)16:垂徑定理及其推論
垂徑定理及其推論是圓這一板塊中最重要的知識(shí)點(diǎn)之一.
考點(diǎn)17:直線與圓、圓與圓的位置關(guān)系及其相應(yīng)的數(shù)量關(guān)系
直線與圓的位置關(guān)系可從與之間的關(guān)系和交點(diǎn)的個(gè)數(shù)這兩個(gè)側(cè)面來反映.在圓與圓的位置關(guān)系中,常需要分類討論求解.
考點(diǎn)18:正多邊形的有關(guān)概念和基本性質(zhì)
考核要求:熟悉正多邊形的有關(guān)概念(如半徑、邊心距、中心角、外角和),并能熟練地運(yùn)用正多邊形的基本性質(zhì)進(jìn)行推理和計(jì)算,在正多邊形的計(jì)算中,常常利用正多邊形的半徑、邊心距和邊長(zhǎng)的一半構(gòu)成的直角三角形,將正多邊形的計(jì)算問題轉(zhuǎn)化為直角三角形的計(jì)算問題.
考點(diǎn)19:畫正三、四、六邊形.
考核要求:能用基本作圖工具,正確作出正三、四、六邊形.
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
一、基本知識(shí)
一、數(shù)與代數(shù)
A、數(shù)與式:
1、有理數(shù):①整數(shù)→正整數(shù),0,負(fù)整數(shù);
、诜?jǐn)?shù)→正分?jǐn)?shù),負(fù)分?jǐn)?shù)
數(shù)軸:①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸。
②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。
、廴绻麅蓚(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。
、軘(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。
、谡龜(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:帶上符號(hào)進(jìn)行正常運(yùn)算。
加法:
①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。
、诋愄(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
③一個(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。
、谌魏螖(shù)與0相乘得0。
、鄢朔e為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。
、0不能作除數(shù)。
乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。
2、實(shí)數(shù)
無理數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù),例如:π=3.1415926…
平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。
、谌绻粋(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。
、垡粋(gè)正數(shù)有2個(gè)平方根;0的平方根為0;負(fù)數(shù)沒有平方根。
、芮笠粋(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。
立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。
實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。
、谠趯(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣;
、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。
3、代數(shù)式
代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng);②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。
、墼诤喜⑼愴(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
、谝粋(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。
、垡粋(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。
冪的運(yùn)算:
A^M+A^N=A^(M+N)
(A^M)^N=A^(MN
。
。ˋ/B)^N=A^N/B^N
除法一樣。
整式的乘法:
、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的`冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
、趩雾(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);
完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。
整式的除法:①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。
、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。
方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。
、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
分式的運(yùn)算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。
加減法:①同分母分式相加減,分母不變,把分子相加減。
、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。
分式方程:①分母中含有未知數(shù)的方程叫分式方程。
、谑狗匠痰姆帜笧0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
解二元一次方程組的方法:代入消元法;加減消元法。
一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程:ax^2+bx+c=0;
1)一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y=0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖像與X軸的交點(diǎn)。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a
,4ac-b^2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a
3)解一元二次方程的步驟:
。1)配方法的步驟:
先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c
4)韋達(dá)定理
利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用
5)一元二次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao
ta”,而△=b2-4ac,這里可以分為3種情況:
I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;
II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;
III當(dāng)△B,則A+C>B+C;
在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;
例如:如果A>B,則A-C>B-C;
在不等式中,如果乘以同一個(gè)正數(shù),不等式符號(hào)不改向;
例如:如果A>B,則AxC>BxC(C>0);
在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;
例如:如果A>B,則AxC<BxC(C<0);
如果不等式乘以0,那么不等號(hào)改為等號(hào);
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;
3、函數(shù)
變量:因變量Y,自變量X。
在用圖像表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。
②當(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。
一次函數(shù)的圖像:
①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖像。
②正比例函數(shù)Y=KX的圖像是經(jīng)過原點(diǎn)的一條直線。
、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O時(shí),則經(jīng)234象限;
當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;
當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;
當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。
④當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認(rèn)識(shí)
1、點(diǎn),線,面
點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。
、诿媾c面相交得線,線與線相交得點(diǎn)。
、埸c(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。
、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
2、角
線:①線段有兩個(gè)端點(diǎn)。
、趯⒕段向一個(gè)方向無限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。
③將線段的兩端無限延長(zhǎng)就形成了直線。直線沒有端點(diǎn)。
④經(jīng)過兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:①兩點(diǎn)之間的所有連線中,線段最短。兩點(diǎn)之間直線最短。
②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
②一度的1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。
角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。
②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角,180。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角,360。
③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。
、诮(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。
、诨ハ啻怪钡膬蓷l直線的交點(diǎn)叫做垂足。
、燮矫鎯(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上;
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問題,一個(gè)角的角平分線就是到角兩邊距離相等的點(diǎn)的集合。
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等;
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上;
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:1、對(duì)角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點(diǎn)有且只有一條直線
2、兩點(diǎn)之間線段最短
3、同角或等角的補(bǔ)角相等
——補(bǔ)角=180-角度。
4、同角或等角的余角相等——余角=90-角度。
5、過一點(diǎn)有且只有一條直線和已知直線垂直
6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7、平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯(cuò)角相等,兩直線平行
11、同旁內(nèi)角互補(bǔ),兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯(cuò)角相等
14、兩直線平行,同旁內(nèi)角互補(bǔ)
15、定理
三角形兩邊的和大于第三邊
16、推論
三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理:
三角形三個(gè)內(nèi)角的和等于180°
18、推論1
直角三角形的兩個(gè)銳角互余
19、推論2
三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20、推論3
三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23、角邊角公理(
ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的
兩個(gè)三角形全等
24、推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25、邊邊邊公理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27、定理1
在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2
到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30、推論1
等腰三角形頂角的平分線平分底邊并且垂直于底邊
31、推論2等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;
32、推論3
等邊三角形的各角都相等,并且每一個(gè)角都等于60°
33、等腰三角形的判定定理
如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
34、等腰三角形的性質(zhì)定理
等腰三角形的兩個(gè)底角相等
(即等邊對(duì)等角)
35、推論1
三個(gè)角都相等的三角形是等邊三角形
36、推論
有一個(gè)角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理
線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40、逆定理
和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1
關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43、定理
如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44、定理3
兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45、逆定理
如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46、勾股定理
直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理
如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理
四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理
n邊形的內(nèi)角的和等于(n-2)×180°
51、推論
任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1
平行四邊形的對(duì)角相等
53、平行四邊形性質(zhì)定理2
平行四邊形的對(duì)邊相等
54、推論
夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3
平行四邊形的對(duì)角線互相平分
56、平行四邊形判定定理1
兩組對(duì)角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2
兩組對(duì)邊分別相等的四邊
形是平行四邊形
58、平行四邊形判定定理3
對(duì)角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4
一組對(duì)邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1
矩形的四個(gè)角都是直角
61、矩形性質(zhì)定理2
矩形的對(duì)角線相等
62、矩形判定定理1
有三個(gè)角是直角的四邊形是矩形
63、矩形判定定理2
對(duì)角線相等的平行四邊形是矩形
64、菱形性質(zhì)定理1
菱形的四條邊都相等
65、菱形性質(zhì)定理2
菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1
四邊都相等的四邊形是菱形
68、菱形判定定理2
對(duì)角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1
正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71、定理1
關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72、定理2
關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分
73、逆定理
如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
74、等腰梯形性質(zhì)定理
等腰梯形在同一底上的兩個(gè)角相等
75、等腰梯形的兩條對(duì)角線相等
76、等腰梯形判定定理
在同一底上的兩個(gè)角相等的梯
形是等腰梯形
77、對(duì)角線相等的梯形是等腰梯形
78、平行線等分線段定理
如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1
經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80、推論2
經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
81、三角形中位線定理
三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理
梯形的中位線平行于兩底,并且等于兩底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理
三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
87、推論
平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
88、定理
如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,
所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
90、定理
平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似
91、相似三角形判定定理1
兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93、判定定理2
兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3
三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
95、定理
如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似(HL)
96、性質(zhì)定理1
相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
97、性質(zhì)定理2
相似三角形周長(zhǎng)的比等于相似比
98、性質(zhì)定理3
相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
(a<90)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理
不在同一直線上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理
垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙遥⑶移椒窒宜鶎(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條弧(直徑)
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
114、定理
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
116、定理
一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117、推論1
同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
118、推論2
半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
119、推論3
如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
120、定理
圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
121、①直線L和⊙O相交
0<=d<r
、谥本L和⊙O相切
d=r
③直線L和⊙O相離
d>r
122、切線的判定定理
經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質(zhì)定理
圓的切線垂直于經(jīng)過切點(diǎn)的半徑
124、推論1
經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
125、推論2
經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
126、切線長(zhǎng)定理
從圓外一點(diǎn)引圓的兩條切線相交與一點(diǎn),它們的切線長(zhǎng)相等
,圓心和這一點(diǎn)的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對(duì)邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對(duì)的圓周角?
129、推論
如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130、相交弦定理
圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
132、切割線定理
從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)?
133、推論
從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條
割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等
134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
135、①兩圓外離
d>R+r
、趦蓤A外切
d=R+r
③兩圓相交
R-r<d<R+r(R>r)
、軆蓤A內(nèi)切
d=R-r(R>r)
⑤兩圓內(nèi)含
d<R-r(R>r)
136、定理
相交兩圓的連心線垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理
任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141、正n邊形的面積Sn=pnxrn/2
p表示正n邊形的周長(zhǎng)
142、正三角形面積√3a^2/4
a表示邊長(zhǎng)
143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長(zhǎng)計(jì)算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內(nèi)公切線長(zhǎng)=d-(R-r)
外公切線長(zhǎng)=d-(R+r)
【數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)04-25
數(shù)學(xué)相似知識(shí)點(diǎn)總結(jié)12-09
小學(xué)數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)04-25
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-25
數(shù)學(xué)命題知識(shí)點(diǎn)總結(jié)04-25
數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)04-25
數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)04-29
數(shù)學(xué)橢圓知識(shí)點(diǎn)總結(jié)08-27