- 高一數(shù)學教案 推薦度:
- 高一數(shù)學教案 推薦度:
- 高一數(shù)學教案 推薦度:
- 相關(guān)推薦
高一數(shù)學教案精選15篇
作為一名專為他人授業(yè)解惑的人民教師,往往需要進行教案編寫工作,教案是教學活動的總的組織綱領(lǐng)和行動方案。那么寫教案需要注意哪些問題呢?下面是小編為大家整理的高一數(shù)學教案,僅供參考,希望能夠幫助到大家。
高一數(shù)學教案1
第二十四教時
教材:倍角公式,推導(dǎo)和差化積及積化和差公式
目的:繼續(xù)復(fù)習鞏固倍角公式,加強對公式靈活運用的訓練;同時,讓學生推導(dǎo)出和差化積和積化和差公式,并對此有所了解。
過程:
一、 復(fù)習倍角公式、半角公式和萬能公式的推導(dǎo)過程:
例一、 已知 , ,tan = ,tan = ,求2 +
(《教學與測試》P115 例三)
解:
又∵tan2 0,tan 0 ,
2 + =
例二、 已知sin cos = , ,求 和tan的值
解:∵sin cos =
化簡得:
∵ 即
二、 積化和差公式的`推導(dǎo)
sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]
sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]
cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]
cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]
這套公式稱為三角函數(shù)積化和差公式,熟悉結(jié)構(gòu),不要求記憶,它的優(yōu)點在于將積式化為和差,有利于簡化計算。(在告知公式前提下)
例三、 求證:sin3sin3 + cos3cos3 = cos32
證:左邊 = (sin3sin)sin2 + (cos3cos)cos2
= (cos4 cos2)sin2 + (cos4 + cos2)cos2
= cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2
= cos4cos2 + cos2 = cos2(cos4 + 1)
= cos22cos22 = cos32 = 右邊
原式得證
三、 和差化積公式的推導(dǎo)
若令 + = , = ,則 , 代入得:
這套公式稱為和差化積公式,其特點是同名的正(余)弦才能使用,它與積化和差公式相輔相成,配合使用。
例四、 已知cos cos = ,sin sin = ,求sin( + )的值
解:∵cos cos = , ①
sin sin = , ②
四、 小結(jié):和差化積,積化和差
五、 作業(yè):《課課練》P3637 例題推薦 13
P3839 例題推薦 13
P40 例題推薦 13
高一數(shù)學教案2
一、教學過程
1.復(fù)習
反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。
求出函數(shù)y=x3的反函數(shù)。
2.新課
先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數(shù)的圖象。有部分學生發(fā)出了“咦”的一聲,因為他們得到了如下的圖象:
教師在畫出上述圖象的學生中選定生1,將他的屏幕內(nèi)容通過教學系統(tǒng)放到其他同學的屏幕上,很快有學生作出反應(yīng)。
生2:這是y=x3的反函數(shù)y=的圖象。
師:對,但是怎么會得到這個圖象,請大家討論。
(學生展開討論,但找不出原因。)
師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>
(生1將他的制作過程重新重復(fù)了一次。)
生3:問題出在他選擇的次序不對。
師:哪個次序?
生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。
師:是這樣嗎?我們請生1再做一次。
(這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)
師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?
(學生再次陷入思考,一會兒有學生舉手。)
師:我們請生4來告訴大家。
生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數(shù)也正好是將x與y交換。
師:完全正確。下面我們進一步研究y=x3的圖象及其反函數(shù)y=的圖象的關(guān)系,同學們能不能看出這兩個函數(shù)的圖象有什么樣的關(guān)系?
(多數(shù)學生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進一步追問。)
師:怎么由y=x3的圖象得到y(tǒng)=的圖象?
生5:將y=x3的'圖象上點的橫坐標與縱坐標交換,可得到y(tǒng)=的圖象。
師:將橫坐標與縱坐標互換?怎么換?
(學生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)
師:我其實是想問大家這兩個函數(shù)的圖象有沒有對稱關(guān)系,有的話,是什么樣的對稱關(guān)系?
(學生重新開始觀察這兩個函數(shù)的圖象,一會兒有學生舉手。)
生6:我發(fā)現(xiàn)這兩個圖象應(yīng)是關(guān)于某條直線對稱。
師:能說說是關(guān)于哪條直線對稱嗎?
生6:我還沒找出來。
(接下來,教師引導(dǎo)學生利用幾何畫板找出兩函數(shù)圖象的對稱軸,畫出如下圖形,如圖2所示:)
學生通過移動點A(點B、C隨之移動)后發(fā)現(xiàn),BC的中點M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點后,發(fā)現(xiàn)中點的軌跡是直線y=x。
生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對稱。
師:這個結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關(guān)系嗎?請同學們用其他函數(shù)來試一試。
(學生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進行驗證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。)
教師巡視全班時已經(jīng)發(fā)現(xiàn)這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),②也不是函數(shù)的圖象。
最后教師與學生一起總結(jié):
點(x,y)與點(y,x)關(guān)于直線y=x對稱;
函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。
二、反思與點評
1.在開學初,我就教學幾何畫板4.0的用法,在教函數(shù)圖象畫法的過程當中,發(fā)現(xiàn)學生根據(jù)選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設(shè)計起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質(zhì),所以本節(jié)課教學中,我有意選擇了幾何畫板4。0進行教學。
2.荷蘭數(shù)學教育家弗賴登塔爾認為,數(shù)學學習過程當中,可借助于生動直觀的形象來引導(dǎo)人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。
計算機作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。
在本節(jié)課的教學中,計算機更多的是作為學生探索發(fā)現(xiàn)的工具,學生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。
當前計算機用于中學數(shù)學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計算機作為學生的認知工具,讓學生通過計算機發(fā)現(xiàn)探索,甚至利用計算機來做數(shù)學,在此過程當中更好地理解數(shù)學概念,促進數(shù)學思維,發(fā)展數(shù)學創(chuàng)新能力。
3.在引出兩個函數(shù)圖象對稱關(guān)系的時候,問題設(shè)計不甚妥當,本來是想要學生回答兩個函數(shù)圖象對稱的關(guān)系,但學生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。
高一數(shù)學教案3
一、教材
首先談?wù)勎覍滩牡睦斫,《兩條直線平行與垂直的判定》是人教A版高中數(shù)學必修2第三章3.1.2的內(nèi)容,本節(jié)課的內(nèi)容是兩條直線平行與垂直的判定的推導(dǎo)及其應(yīng)用,學生對于直線平行和垂直的概念已經(jīng)十分熟悉,并且在上節(jié)課學習了直線的傾斜角與斜率,為本節(jié)課的學習打下了基礎(chǔ)。
二、學情
教材是我們教學的工具,是載體。但我們的教學是要面向?qū)W生的,高中學生本身身心已經(jīng)趨于成熟,管理與教學難度較大,那么為了能夠成為一個合格的高中教師,深入了解所面對的學生可以說是必修課。本階段的學生思維能力已經(jīng)非常成熟,能夠有自己獨立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢,讓學生獨立思考探索。
三、教學目標
根據(jù)以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:
(一)知識與技能
掌握兩條直線平行與垂直的判定,能夠根據(jù)其判定兩條直線的位置關(guān)系。
(二)過程與方法
在經(jīng)歷兩條直線平行與垂直的判定過程中,提升邏輯推理能力。
(三)情感態(tài)度價值觀
在猜想論證的過程中,體會數(shù)學的嚴謹性。
四、教學重難點
我認為一節(jié)好的數(shù)學課,從教學內(nèi)容上說一定要突出重點、突破難點。而教學重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學重點是:兩條直線平行與垂直的判定。本節(jié)課的教學難點是:兩條直線平行與垂直的判定的推導(dǎo)。
五、教法和學法
現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導(dǎo)者,教學的一切活動都必須以強調(diào)學生的主動性、積極性為出發(fā)點。根據(jù)這一教學理念,結(jié)合本節(jié)課的.內(nèi)容特點和學生的年齡特征,本節(jié)課我采用講授法、練習法、小組合作等教學方法。
六、教學過程
下面我將重點談?wù)勎覍虒W過程的設(shè)計。
(一)新課導(dǎo)入
首先是導(dǎo)入環(huán)節(jié),那么我采用復(fù)習導(dǎo)入,回顧上節(jié)課所學的直線的傾斜角與斜率并順勢提問:能否通過直線的斜率,來判斷兩條直線的位置關(guān)系呢?
利用上節(jié)課所學的知識進行導(dǎo)入,很好的克服學生的畏難情緒。
(二)新知探索
接下來是教學中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、啟發(fā)法等。
高一數(shù)學教案4
一、指導(dǎo)思想與理論依據(jù)
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。
二、教材分析
三角函數(shù)的誘導(dǎo)公式是普通高中課程標準實驗教科書(人教A版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四).教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與、、終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關(guān)系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
三、學情分析
本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應(yīng)該能輕松的完成本節(jié)課的教學內(nèi)容.
四、教學目標
(1).基礎(chǔ)知識目標:理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;
(2).能力訓練目標:能正確運用誘導(dǎo)公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數(shù)求值與化簡;
(3).創(chuàng)新素質(zhì)目標:通過對公式的推導(dǎo)和運用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學思想,提高學生分析問題、解決問題的能力;
(4).個性品質(zhì)目標:通過誘導(dǎo)公式的學習和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀.
五、教學重點和難點
1.教學重點
理解并掌握誘導(dǎo)公式.
2.教學難點
正確運用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式.
六、教法學法以及預(yù)期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預(yù)期效果等三個方面做如下分析.
1.教法
數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結(jié)果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).
在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅.
2.學法
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生程度的消化知識,提高學習熱情是教者必須思考的問題.
在本節(jié)課的教學過程中,本人引導(dǎo)學生的學法為思考問題、共同探討、解決問題簡單應(yīng)用、重現(xiàn)探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉(zhuǎn)化為主動的自主學習.
3.預(yù)期效果
本節(jié)課預(yù)期讓學生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題.
七、教學流程設(shè)計
(一)創(chuàng)設(shè)情景
1.復(fù)習銳角300,450,600的三角函數(shù)值;
2.復(fù)習任意角的三角函數(shù)定義;
3.問題:由,你能否知道sin2100的值嗎?引如新課.
設(shè)計意圖
自信的鼓勵是增強學生學習數(shù)學的`自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.
(二)新知探究
1.讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;
2.讓學生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點的坐標有什么關(guān)系;
3.Sin2100與sin300之間有什么關(guān)系.
設(shè)計意圖
由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.
(三)問題一般化
探究一
1.探究發(fā)現(xiàn)任意角的終邊與的終邊關(guān)于原點對稱;
2.探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點坐標關(guān)于原點對稱;
3.探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系.
設(shè)計意圖
首先應(yīng)用單位圓,并以對稱為載體,用聯(lián)系的觀點,把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來,數(shù)形結(jié)合,問題的設(shè)計提問從特殊到一般,從線對稱到點對稱到三角函數(shù)值之間的關(guān)系,逐步上升,一氣呵成誘導(dǎo)公式二.同時也為學生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習設(shè)計為了熟悉公式一,讓學生感知到成功的喜悅,進而敢于挑戰(zhàn),敢于前進
(四)練習
利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
(1).;(2).;(3)..
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
(五)問題變形
由sin3000=-sin600出發(fā),用三角的定義引導(dǎo)學生求出sin(-3000),Sin1500值,讓學生聯(lián)想若已知sin3000=-sin600,能否求出sin(-3000),Sin1500)的值.學生自主探究
高一數(shù)學教案5
一、教學目標
1.知識與技能
。1)解二分法求解方程的近似解的思想方法,會用二分法求解具體方程的近似解;
。2)體會程序化解決問題的思想,為算法的學習作準備。
2.過程與方法
。1)讓學生在求解方程近似解的實例中感知二分發(fā)思想;
。2)讓學生歸納整理本節(jié)所學的知識。
3.情感、態(tài)度與價值觀
、袤w會二分法的程序化解決問題的思想,認識二分法的價值所在,使學生更加熱愛數(shù)學;
、谂囵B(yǎng)學生認真、耐心、嚴謹?shù)臄?shù)學品質(zhì)。
二、 教學重點、難點
重點:用二分法求解函數(shù)f(x)的零點近似值的步驟。
難點:為何由︱a - b ︳< 便可判斷零點的近似值為a(或b)?
三、 學法與教學用具
1.想-想。
2.教學用具:計算器。
四、教學設(shè)想
。ㄒ唬、創(chuàng)設(shè)情景,揭示課題
提出問題:
。1)一元二次方程可以用公式求根,但是沒有公式可以用來求解放程 ㏑x+2x-6=0的根;聯(lián)系函數(shù)的`零點與相應(yīng)方程根的關(guān)系,能否利用函數(shù)的有關(guān)知識來求她的根呢?
(2)通過前面一節(jié)課的學習,函數(shù)f(x)=㏑x+2x-6在區(qū)間內(nèi)有零點;進一步的問題是,如何找到這個零點呢?
。ǘ、研討新知
一個直觀的想法是:如果能夠?qū)⒘泓c所在的范圍盡量的縮小,那么在一定的精確度的要求下,我們可以得到零點的近似值;為了方便,我們通過“取中點”的方法逐步縮小零點所在的范圍。
取區(qū)間(2,3)的中點2.5,用計算器算得f(2.5)≈-0.084,因為f(2.5)xf(3)<0,所以零點在區(qū)間(2.5,3)內(nèi);
再取區(qū)間(2.5,3)的中點2.75,用計算器算得f(2.75)≈0.512,因為f(2.75)xf(2.5)<0,所以零點在(2.5,2.75)內(nèi);
由于(2,3),(2.5,3),(2.5,2.75)越來越小,所以零點所在范圍確實越來越小了;重復(fù)上述步驟,那么零點所在范圍會越來越小,這樣在有限次重復(fù)相同的步驟后,在一定的精確度下,將所得到的零點所在區(qū)間上任意的一點作為零點的近似值,特別地可以將區(qū)間的端點作為零點的近似值。例如,當精確度為0.01時,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我們可以將x=2.54作為函數(shù)f(x)=㏑x+2x-6零點的近似值,也就是方程㏑x+2x-6=0近似值。
這種求零點近似值的方法叫做二分法。
1.師:引導(dǎo)學生仔細體會上邊的這段文字,結(jié)合課本上的相關(guān)部分,感悟其中的思想方法.
生:認真理解二分法的函數(shù)思想,并根據(jù)課本上二分法的一般步驟,探索其求法。
2.為什么由︱a - b ︳<便可判斷零點的近似值為a(或b)?
先由學生思考幾分鐘,然后作如下說明:
設(shè)函數(shù)零點為x0,則a<x0<b,則:
0<x0-a<b-a,a-b<x0-b<0;
由于︱a - b ︳<,所以
︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,
即a或b 作為零點x0的近似值都達到了給定的精確度。
。ㄈ、鞏固深化,發(fā)展思維
1.學生在老師引導(dǎo)啟發(fā)下完成下面的例題
例2.借助計算器用二分法求方程2x+3x=7的近似解(精確到0.01)
問題:原方程的近似解和哪個函數(shù)的零點是等價的?
師:引導(dǎo)學生在方程右邊的常數(shù)移到左邊,把左邊的式子令為f(x),則原方程的解就是f(x)的零點。
生:借助計算機或計算器畫出函數(shù)的圖象,結(jié)合圖象確定零點所在的區(qū)間,然后利用二分法求解.
。ㄋ模、歸納整理,整體認識
在師生的互動中,讓學生了解或體會下列問題:
。1)本節(jié)我們學過哪些知識內(nèi)容?
。2)你認為學習“二分法”有什么意義?
。3)在本節(jié)課的學習過程中,還有哪些不明白的地方?
(五)、布置作業(yè)
P92習題3.1A組第四題,第五題。
高一數(shù)學教案6
一、指導(dǎo)思想:
使學生在九年義務(wù)教育數(shù)學課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。
1。獲得必要的數(shù)學基礎(chǔ)知識和基本技能,理解基本的數(shù)學概念、數(shù)學結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
2。提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3。提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4。發(fā)展數(shù)學應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5。提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
6。具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應(yīng)用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書數(shù)學(a版)》,它在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性等到,具有如下特點:
1。親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學習激情。
2。問題性:以恰時恰點的問題引導(dǎo)數(shù)學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3?茖W性與思想性:通過不同數(shù)學內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學習數(shù)學地思考問題的方式,提高數(shù)學思維能力,培育理性精神。
4。時代性與應(yīng)用性:以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學活動,發(fā)展應(yīng)用意識。
三、教法分析:
1。選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學的概念和結(jié)論,數(shù)學的思想和方法,以及數(shù)學應(yīng)用的學習情境,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
2。通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
3。在教學中強調(diào)類比,推廣,特殊化,化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
四、學情分析:
1、基本情況:12班共人,男生人,女生人;本班相對而言,數(shù)學尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。
14班共人,男生人,女生人;本班相對而言,數(shù)學尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。
2、兩個班均屬普高班,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養(yǎng)學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。
五、教學措施:
1、激發(fā)學生的'學習興趣。由數(shù)學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
3、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
高一數(shù)學教案7
教學目標
1.使學生理解函數(shù)單調(diào)性的概念,并能判斷一些簡單函數(shù)在給定區(qū)間上的單調(diào)性.
2.通過函數(shù)單調(diào)性概念的教學,培養(yǎng)學生分析問題、認識問題的能力.通過例題培養(yǎng)學生利用定義進行推理的邏輯思維能力.
3.通過本節(jié)課的教學,滲透數(shù)形結(jié)合的數(shù)學思想,對學生進行辯證唯物主義的教育.
教學重點與難點
教學重點:函數(shù)單調(diào)性的概念.
教學難點:函數(shù)單調(diào)性的判定.
教學過程設(shè)計
一、引入新課
師:請同學們觀察下面兩組在相應(yīng)區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?
。ㄓ猛队盎脽艚o出兩組函數(shù)的圖象.)
第一組:
第二組:
生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減。
師:(手執(zhí)投影棒使之沿曲線移動)對.他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當x變大時,第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變。m然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們在學習一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時,就曾經(jīng)根據(jù)函數(shù)的圖象研究過函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對函數(shù)這種性質(zhì)作更進一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.
(點明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認識的,又是新的知識,引起學生的注意.)
二、對概念的分析
。ò鍟n題:)
師:請同學們打開課本第51頁,請××同學把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.
。▽W生朗讀.)
師:好,請坐.通過剛才閱讀增函數(shù)和減函數(shù)的定義,請同學們思考一個問題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?
生:我認為是一致的.定義中的“當x1<x2時,都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當x1<x2時,都有f(x1)>f(x2)”描述了y隨x的增大而減少.
師:說得非常正確.定義中用了兩個簡單的不等關(guān)系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學的魅力!
。ㄍㄟ^教師的情緒感染學生,激發(fā)學生學習數(shù)學的興趣.)
師:現(xiàn)在請同學們和我一起來看剛才的兩組圖中的第一個函數(shù)y=f1(x)和y=f2(x)的圖象,體會這種魅力.
。ㄖ笀D說明.)
師:圖中y=f1(x)對于區(qū)間[a,b]上的任意x1,x2,當x1<x2時,都有f1(x1)<f1(x),因此y=f1(x)在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)y=f1(x)的單調(diào)增區(qū)間;而圖中y=f2(x)對于區(qū)間[a,b]上的任意x1,x2,當x1<x2時,都有f2(x1)>f2(x2),因此y=f2(x)在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)y=f2(x)的單調(diào)減區(qū)間.
。ń處熤笀D說明分析定義,使學生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來,使新舊知識融為一體,加深對概念的理解.滲透數(shù)形結(jié)合分析問題的數(shù)學思想方法.)
師:因此我們可以說,增函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)……
。ú话言捳f完,指一名學生接著說完,讓學生的思維始終跟著老師.)
生:較大的函數(shù)值的函數(shù).
師:那么減函數(shù)呢?
生:減函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)較小的函數(shù)值的函數(shù).
。▽W生可能回答得不完整,教師應(yīng)指導(dǎo)他說完整.)
師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的分析,通過閱讀和分析你認為在定義中我們應(yīng)該抓住哪些關(guān)鍵詞語,才能更透徹地認識定義?
。▽W生思索.)
學生在高中階段以至在以后的學習中經(jīng)常會遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學好數(shù)學及其他各學科的重要一環(huán).因此教師應(yīng)該教會學生如何深入理解一個概念,以培養(yǎng)學生分析問題,認識問題的能力.
。ń處熢趯W生思索過程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語處適當加重語氣.在學生感到無從下手時,給以適當?shù)奶崾荆?/p>
生:我認為在定義中,有一個詞“給定區(qū)間”是定義中的關(guān)鍵詞語.
師:很好,我們在學習任何一個概念的時候,都要善于抓住定義中的關(guān)鍵詞語,在學習幾個相近的概念時還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對相應(yīng)的區(qū)間而言的,離開了相應(yīng)的區(qū)間就根本談不上函數(shù)的增減性.請大家思考一個問題,我們能否說一個函數(shù)在x=5時是遞增或遞減的?為什么?
生:不能.因為此時函數(shù)值是一個數(shù).
師:對.函數(shù)在某一點,由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區(qū)間泛泛談?wù)撃骋粋函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個我們學過的例子?
生:不能.比如二次函數(shù)y=x2,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因而我們不能說y=x2是增函數(shù)或是減函數(shù).
。ㄔ趯W生回答問題時,教師板演函數(shù)y=x2的圖像,從“形”上感知.)
師:好.他(她)舉了一個例子來幫助我們理解定義中的詞語“給定區(qū)間”.這說明是函數(shù)在某一個區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們在談?wù)摵瘮?shù)的增減性時必須指明相應(yīng)的區(qū)間.
師:還有沒有其他的關(guān)鍵詞語?
生:還有定義中的“屬于這個區(qū)間的任意兩個”和“都有”也是關(guān)鍵詞語.
師:你答的很對.能解釋一下為什么嗎?
(學生不一定能答全,教師應(yīng)給予必要的提示.)
師:“屬于”是什么意思?
生:就是說兩個自變量x1,x2必須取自給定的區(qū)間,不能從其他區(qū)間上取.
師:如果是閉區(qū)間的話,能否取自區(qū)間端點?
生:可以.
師:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值來判斷函數(shù)的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).
師:能不能構(gòu)造一個反例來說明“任意”呢?
。ㄗ寣W生思考片刻.)
生:可以構(gòu)造一個反例.考察函數(shù)y=x2,在區(qū)間[-2,2]上,如果取兩個特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數(shù),那就錯了.
師:那么如何來說明“都有”呢?
生:y=x2在[-2,2]上,當x1=-2,x2=-1時,有f(x1)>f(x2);當x1=1,x2=2時,有f(x1)<f(x2),這時就不能說y=x2,在[-2,2]上是增函數(shù)或減函數(shù).
師:好極了!通過分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個點的情況來判斷,而必須嚴格依照定義在給定區(qū)間內(nèi)任取兩個自變量x1,x2,根據(jù)它們的函數(shù)值f(x1)和f(x2)的大小來判定函數(shù)的增減性.
(教師通過一系列的設(shè)問,使學生處于積極的思維狀態(tài),從抽象到具體,并通過反例的反襯,使學生加深對定義的理解.在概念教學中,反例常常幫助學生更深刻地理解概念,鍛煉學生的發(fā)散思維能力.)
師:反過來,如果我們已知f(x)在某個區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的大小.即一般成立則特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.
(用辯證法的原理來解釋數(shù)學知識,同時用數(shù)學知識去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學生學習的能力.)
三、概念的應(yīng)用
例1 圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說出f(x)的單調(diào)區(qū)間,并回答:在每一個單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?
。ㄓ猛队盎脽艚o出圖象.)
生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.
生乙:我有一個問題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢?
師:問得好.這說明你想的很仔細,思考問題很嚴謹.容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,(增或減).反之不然.
例2 證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).
師:從函數(shù)圖象上觀察固然形象,但在理論上不夠嚴格,尤其是有些函數(shù)不易畫出圖象,因此必須學會根據(jù)解析式和定義從數(shù)量上分析辨認,這才是我們研究函數(shù)單調(diào)性的基本途徑.
(指出用定義證明的必要性.)
師:怎樣用定義證明呢?請同學們思考后在筆記本上寫出證明過程.
。ń處熝惨,并指定一名中等水平的學生在黑板上板演.學生可能會對如何比較f(x1)和f(x2)的大小關(guān)系感到無從入手,教師應(yīng)給以啟發(fā).)
師:對于f(x1)和f(x2)我們?nèi)绾伪容^它們的大小呢?我們知道對兩個實數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號來決定兩個數(shù)的大小關(guān)系.
生:(板演)設(shè)x1,x2是(-∞,+∞)上任意兩個自變量,當x1<x2時,
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函數(shù).
師:他的證明思路是清楚的.一開始設(shè)x1,x2是(-∞,+∞)內(nèi)任意兩個自變量,并設(shè)x1<x2(邊說邊用彩色粉筆在相應(yīng)的語句下劃線,并標注“①→設(shè)”),然后看f(x1)-f(x2),這一步是證明的關(guān)鍵,再對式子進行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標注”②→作差,變形”).但美中不足的是他沒能說明為什么f(x1)-f(x2)<0,沒有用到開始的假設(shè)“x1<x2”,不要以為其顯而易見,在這里一定要對變形后的式子說明其符號.應(yīng)寫明“因為x1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號”(在黑板上板演,并注明“③→定符號”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應(yīng)位置標注“④→下結(jié)論”).
這就是我們用定義證明函數(shù)增減性的四個步驟,請同學們記。枰赋龅氖堑诙,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以。
(對學生的做法進行分析,把證明過程步驟化,可以形成思維的定勢.在學生剛剛接觸一個新的知識時,思維定勢對理解知識本身是有益的,同時對學生養(yǎng)成一定的思維習慣,形成一定的解題思路也是有幫助的.)
調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.
師:你的結(jié)論是什么呢?
上都是減函數(shù),因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).
生乙:我有不同的意見,我認為這個函數(shù)不是整個定義域內(nèi)的減函數(shù),因為它不符合減函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內(nèi)的減函數(shù).
生:也不能這樣認為,因為由圖象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).
域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個單調(diào)增(減)區(qū)間之間不要用符號“∪”連接.另外,x=0不是定義域中的元素,此時不要寫成閉區(qū)間.
上是減函數(shù).
。ń處熝惨暎畬W生證明中出現(xiàn)的`問題給予點拔.可依據(jù)學生的問題,給出下面的提示:
。1)分式問題化簡方法一般是通分.
。2)要說明三個代數(shù)式的符號:k,x1·x2,x2-x1.
要注意在不等式兩邊同乘以一個負數(shù)的時候,不等號方向要改變.
對學生的解答進行簡單的分析小結(jié),點出學生在證明過程中所出現(xiàn)的問題,引起全體學生的重視.)
四、課堂小結(jié)
師:請同學小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應(yīng)該特別注意的?
。ㄕ堃粋思路清晰,善于表達的學生口述,教師可從中給予提示.)
生:這節(jié)課我們學習了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個關(guān)鍵詞語;在寫單調(diào)區(qū)間時不要輕易用并集的符號連接;最后在用定義證明時,應(yīng)該注意證明的四個步驟.
五、作業(yè)
1.課本P53練習第1,2,3,4題.
數(shù).
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(*)
+b>0.由此可知(*)式小于0,即f(x1)<f(x2).
課堂教學設(shè)計說明
是函數(shù)的一個重要性質(zhì),是研究函數(shù)時經(jīng)常要注意的一個性質(zhì).并且在比較幾個數(shù)的大小、對函數(shù)作定性分析、以及與其他知識的綜合應(yīng)用上都有廣泛的應(yīng)用.對學生來說,早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質(zhì).學生對此有一定的感性認識,對概念的理解有一定好處,但另一方面學生也會覺得是已經(jīng)學過的知識,感覺乏味.因此,在設(shè)計教案時,加強了對概念的分析,希望能夠使學生認識到看似簡單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.
另外,對概念的分析是在引進一個新概念時必須要做的,對概念的深入的正確的理解往往是學生認知過程中的難點.因此在本教案的設(shè)計過程中突出對概念的分析不僅僅是為了分析函數(shù)單調(diào)性的定義,而且想讓學生對如何學會、弄懂一個概念有初步的認識,并且在以后的學習中學有所用.
還有,使用函數(shù)單調(diào)性定義證明是一個難點,學生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學生理解概念,也可以對學生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學習的不等式證明方法中的比較化的基本思路,現(xiàn)在提出要求,對今后的教學作一定的鋪墊.
高一數(shù)學教案8
一、教材
《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點內(nèi)容之一。從知識體系上看,它既是點與圓的位置關(guān)系的延續(xù)與提高,又是學習切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關(guān)知識間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學思想方法,有助于提高學生的思維品質(zhì)。
二、學情
學生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。
三、教學目標
(一)知識與技能目標
能夠準確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關(guān)系。
(二)過程與方法目標
經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價值觀目標
激發(fā)求知欲和學習興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結(jié)規(guī)律的能力,解題時養(yǎng)成歸納總結(jié)的良好習慣。
四、教學重難點
(一)重點
用解析法研究直線與圓的位置關(guān)系。
(二)難點
體會用解析法解決問題的數(shù)學思想。
五、教學方法
根據(jù)本節(jié)課教材內(nèi)容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術(shù)工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學生的數(shù)學探究與數(shù)學思維提供支持.在教學中采用小組合作學習的方式,這樣可以為不同認知基礎(chǔ)的學生提供學習機會,同時有利于發(fā)揮各層次學生的'作用,教師始終堅持啟發(fā)式教學原則,設(shè)計一系列問題串,以引導(dǎo)學生的數(shù)學思維活動。
六、教學過程
(一)導(dǎo)入新課
教師借助多媒體創(chuàng)設(shè)泰坦尼克號的情景,并從中抽象出數(shù)學模型:已知冰山的分布是一個半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?
教師引導(dǎo)學生回顧初中已經(jīng)學習的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學簡圖,即相交、相切、相離。
設(shè)計意圖:在已有的知識基礎(chǔ)上,提出新的問題,有利于保持學生知識結(jié)構(gòu)的連續(xù)性,同時開闊視野,激發(fā)學生的學習興趣。
(二)新課教學——探究新知
教師提問如何判斷直線與圓的位置關(guān)系,學生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學生的鼓勵。
判斷方法:
(1)定義法:看直線與圓公共點個數(shù)
即研究方程組解的個數(shù),具體做法是聯(lián)立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。
(2)比較法:圓心到直線的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進一步拋出疑問,對比兩種方法,由學生觀察實踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學生解答,總結(jié)思路。
已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?
讓學生自主探索,討論交流,并闡述自己的解題思路。
當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學利用直線方程求兩直線交點的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個數(shù)確定直線與圓的交點個數(shù),進一步確定他們的位置關(guān)系。最后明確解題步驟。
(四)歸納總結(jié)——鞏固新知
為了將結(jié)論由特殊推廣到一般引導(dǎo)學生思考:
可由方程組的解的不同情況來判斷:
當方程組有兩組實數(shù)解時,直線l與圓C相交;
當方程組有一組實數(shù)解時,直線l與圓C相切;
當方程組沒有實數(shù)解時,直線l與圓C相離。
活動:我將抽取兩位同學在黑板上扮演,并在巡視過程中對部分學生加以指導(dǎo)。最后對黑板上的兩名學生的解題過程加以分析完善。通過對基礎(chǔ)題的練習,鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個學生獲得后續(xù)學習的信心。
(五)小結(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會以口頭提問的方式:
(1)這節(jié)課學習的主要內(nèi)容是什么?
(2)在數(shù)學問題的解決過程中運用了哪些數(shù)學思想?
設(shè)計意圖:啟發(fā)式的課堂小結(jié)方式能讓學生主動回顧本節(jié)課所學的知識點。也促使學生對知識網(wǎng)絡(luò)進行主動建構(gòu)。
作業(yè):在學生回顧本堂學習內(nèi)容明確兩種解題思路后,教師讓學生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關(guān)系來解決這類問題,對用方程組解的個數(shù)的判斷方法,要求學生課外做進一步的探究,下一節(jié)課匯報。
七、板書設(shè)計
我的板書本著簡介、直觀、清晰的原則,這就是我的板書設(shè)計。
高一數(shù)學教案9
教學目標:
1.進一步理解對數(shù)函數(shù)的性質(zhì),能運用對數(shù)函數(shù)的相關(guān)性質(zhì)解決對數(shù)型函數(shù)的常見問題.
2.培養(yǎng)學生數(shù)形結(jié)合的思想,以及分析推理的能力.
教學重點:
對數(shù)函數(shù)性質(zhì)的應(yīng)用.
教學難點:
對數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.
教學過程:
一、問題情境
1.復(fù)習對數(shù)函數(shù)的性質(zhì).
2.回答下列問題.
(1)函數(shù)y=log2x的值域是 ;
(2)函數(shù)y=log2x(x≥1)的值域是 ;
(3)函數(shù)y=log2x(0
3.情境問題.
函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學生活動
探究完成情境問題.
三、數(shù)學運用
例1 求函數(shù)y=log2(x2+2x+2)的定義域和值域.
練習:
(1)已知函數(shù)y=log2x的值域是[-2,3],則x的范圍是________________.
(2)函數(shù) ,x(0,8]的值域是 .
(3)函數(shù)y=log (x2-6x+17)的值域 .
(4)函數(shù) 的`值域是_______________.
例2 判斷下列函數(shù)的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.75>1,試求實數(shù)a 取值范圍.
例4 已知函數(shù)y=loga(1-ax)(a>0,a≠1).
(1)求函數(shù)的定義域與值域;
(2)求函數(shù)的單調(diào)區(qū)間.
練習:
1.下列函數(shù)(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域為R的有 (請寫出所有正確結(jié)論的序號).
2.函數(shù)y=lg( -1)的圖象關(guān)于 對稱.
3.已知函數(shù) (a>0,a≠1)的圖象關(guān)于原點對稱,那么實數(shù)m= .
4.求函數(shù) ,其中x [ ,9]的值域.
四、要點歸納與方法小結(jié)
(1)借助于對數(shù)函數(shù)的性質(zhì)研究對數(shù)型函數(shù)的定義域與值域;
(2)換元法;
(3)能畫出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).
五、作業(yè)
課本P70~71-4,5,10,11.
高一數(shù)學教案10
目標:
1.讓學生熟練掌握二次函數(shù)的圖象,并會判斷一元二次方程根的存在性及根的個數(shù) ;
2.讓學生了解函數(shù)的零點與方程根的聯(lián)系 ;
3.讓學生認識到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點中的作用 ;
4。培養(yǎng)學生動手操作的能力 。
二、教學重點、難點
重點:零點的概念及存在性的判定;
難點:零點的確定。
三、復(fù)習引入
例1:判斷方程 x2-x-6=0 解的存在。
分析:考察函數(shù)f(x)= x2-x-6, 其
圖像為拋物線容易看出,f(0)=-60,
f(4)0,f(-4)0
由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,
點B (0,-6)與點C(4,6)之間的那部分曲線
必然穿過x軸,即在區(qū)間(0,4)內(nèi)至少有點
X1 使f(X1)=0;同樣,在區(qū)間(-4,0) 內(nèi)也至
少有點X2,使得f( X2)=0,而方程至多有兩
個解,所以在(-4,0),(0,4)內(nèi)各有一解
定義:對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù) x叫函數(shù)y=f(x)的零點
抽象概括
y=f(x)的圖像與x軸的交點的橫坐標叫做該函數(shù)的零點,即f(x)=0的解。
若y=f(x)的圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個零點,即f(x)=0在 (a,b)內(nèi)至少有一個實數(shù)解。
f(x)=0有實根(等價與y=f(x))與x軸有交點(等價與)y=f(x)有零點
所以求方程f(x)=0的根實際上也是求函數(shù)y=f(x)的零點
注意:1、這里所說若f(a)f(b)0,則在區(qū)間(a,b)內(nèi)方程f(x)=0至少有一個實數(shù)解指出了方程f(x)=0的`實數(shù)解的存在性,并不能判斷具體有多少個解;
2、若f(a)f(b)0,且y=f(x)在(a,b)內(nèi)是單調(diào)的,那么,方程f(x)=0在(a,b)內(nèi)有唯一實數(shù)解;
3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;
4、但此結(jié)論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)
5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點。
四、知識應(yīng)用
例2:已知f(x)=3x-x2 ,問方程f(x)=0在區(qū)間[-1,0]內(nèi)沒有實數(shù)解?為什么?
解:f(x)=3x-x2的圖像是連續(xù)曲線, 因為
f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,
所以f(-1) f(0) 0,在區(qū)間[-1,0]內(nèi)有零點,即f(x)=0在區(qū)間[-1,0]內(nèi)有實數(shù)解
練習:求函數(shù)f(x)=lnx+2x-6 有沒有零點?
例3 判定(x-2)(x-5)=1有兩個相異的實數(shù)解,且有一個大于5,一個小于2。
解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有
f(5)=(5-2)(5-5)-1=-1
f(2)=(2-2)(2-5)-1=-1
又因為f(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個交點,在( -,2)內(nèi)也有一個交點,所以方程式(x-2)(x-5)=1有兩個相異數(shù)解,且一個大于5,一個小于2。
練習:關(guān)于x的方程2x2-3x+2m=0有兩個實根均在[-1,1]內(nèi),求m的取值范圍。
五、課后作業(yè)
p133第2,3題
高一數(shù)學教案11
一、教學目標:
1.通過高速公路上的實際例子,引起積極的思考和交流,從而認識到生活中處處可以遇到變量間的依賴關(guān)系.能夠利用初中對函數(shù)的認識,了解依賴關(guān)系中有的是函數(shù)關(guān)系,有的則不是函數(shù)關(guān)系.
2.培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學的態(tài)度.
二、教學重點:
在于讓學生領(lǐng)悟生活中處處有變量,變量之間充滿了關(guān)系
教學難點:培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學的態(tài)度
三、教學方法:
探究交流法
四、教學過程
(一)、知識探索:
閱讀課文P25頁。實例分析:書上在高速公路情境下的問題。
在高速公路情景下,你能發(fā)現(xiàn)哪些函數(shù)關(guān)系?
2.對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關(guān)系,兩種依賴關(guān)系都有函數(shù)關(guān)系嗎?
問題小結(jié):
1.生活中變量及變量之間的依賴關(guān)系隨處可見,并非有依賴關(guān)系的兩個變量都有函數(shù)關(guān)系,只有滿足對于一個變量的每一個值,另一個變量都有確定的值與之對應(yīng),才稱它們之間有函數(shù)關(guān)系。
2.構(gòu)成函數(shù)關(guān)系的兩個變量,必須是對于自變量的每一個值,因變量都有確定的y值與之對應(yīng)。
3.確定變量的'依賴關(guān)系,需分清誰是自變量,誰是因變量,如果一個變量隨著另一個變量的變化而變化,那么這個變量是因變量,另一個變量是自變量。
(二)、新課探究——函數(shù)概念
1.初中關(guān)于函數(shù)的定義:
2.從集合的觀點出發(fā),函數(shù)定義:
給定兩個非空數(shù)集A和B,如果按照某個對應(yīng)關(guān)系f,對于A中的任何一個數(shù)x,在集合B中都存在確定的數(shù)f(x)與之對應(yīng),那么就把這種對應(yīng)關(guān)系f叫做定義在A上的函數(shù),記作或f:A→B,或y=f(x),x∈A.;
此時x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)︱x∈A}叫作函數(shù)的值域。習慣上我們稱y是x的函數(shù)。
定義域,值域,對應(yīng)法則
4.函數(shù)值
當x=a時,我們用f(a)表示函數(shù)y=f(x)的函數(shù)值。
高一數(shù)學教案12
教學目標
1、掌握平面向量的數(shù)量積及其幾何意義;
2、掌握平面向量數(shù)量積的重要性質(zhì)及運算律;
3、了解用平面向量的數(shù)量積可以處理垂直的問題;
4、掌握向量垂直的條件、
教學重難點
教學重點:平面向量的數(shù)量積定義
教學難點:平面向量數(shù)量積的'定義及運算律的理解和平面向量數(shù)量積的應(yīng)用
教學過程
1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、
并規(guī)定0向量與任何向量的數(shù)量積為0、
×探究:1、向量數(shù)量積是一個向量還是一個數(shù)量?它的符號什么時候為正?什么時候為負?
2、兩個向量的數(shù)量積與實數(shù)乘向量的積有什么區(qū)別?
(1)兩個向量的數(shù)量積是一個實數(shù),不是向量,符號由cosq的符號所決定、
(2)兩個向量的數(shù)量積稱為內(nèi)積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數(shù)量的積,書寫時要嚴格區(qū)分、符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替、
(3)在實數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0、因為其中cosq有可能為0、
高一數(shù)學教案13
一、本課數(shù)學內(nèi)容的本質(zhì)、地位、作用分析
普通高中課標教材必修1共安排了三章內(nèi)容,第一章是《集合與函數(shù)的概念》,第二章是《基本初等函數(shù)(Ⅰ)》,第三章是《函數(shù)的應(yīng)用》。第三章編排了兩塊內(nèi)容,第一部分是函數(shù)與方程,第二部分是函數(shù)模型及其應(yīng)用。本節(jié)課方程的根與函數(shù)的零點,正是在這種建立和運用函數(shù)模型的大背景下展開的。本節(jié)課的主要教學內(nèi)容是函數(shù)零點的定義和函數(shù)零點存在的判定依據(jù),這兩者顯然是為下節(jié)“用二分法求方程近似解”這一“函數(shù)的應(yīng)用”服務(wù)的,同時也為后續(xù)學習的算法埋下伏筆。由此可見,它起著承上啟下的作用,與整章、整冊綜合成一個整體,學好本節(jié)意義重大。
函數(shù)在數(shù)學中占據(jù)著不可替代的核心地位,根本原因之一在于函數(shù)與其他知識具有廣泛的聯(lián)系,而函數(shù)的零點就是其中的一個鏈結(jié)點,它從不同的角度,將數(shù)與形,函數(shù)與方程有機地聯(lián)系在一起。方程本身就是函數(shù)的一部分,用函數(shù)的觀點來研究方程,就是將局部放入整體中研究,進而對整體和局部都有一個更深層次的理解,并學會用聯(lián)系的觀點解決問題,為后面函數(shù)與不等式和數(shù)列等其他知識的聯(lián)系奠定基礎(chǔ)。
二、教學目標分析
本節(jié)內(nèi)容包含三大知識點:
一、函數(shù)零點的定義;
二、方程的根與函數(shù)零點的等價關(guān)系;
三、零點存在性定理。
結(jié)合本節(jié)課引入三大知識點的方法,設(shè)定本節(jié)課的知識與技能目標如下:
1.結(jié)合方程根的幾何意義,理解函數(shù)零點的定義;
2.結(jié)合零點定義的探究,掌握方程的實根與其相應(yīng)函數(shù)零點之間的等價關(guān)系;
3.結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法.
本節(jié)課是學生在學習了函數(shù)的性質(zhì),具備了初步的數(shù)形結(jié)合知識的基礎(chǔ)上,通過對特殊函數(shù)圖象的分析進行展開的,是培養(yǎng)學生“化歸與轉(zhuǎn)化思想”,“數(shù)形結(jié)合思想”,“函數(shù)與方程思想”的優(yōu)質(zhì)載體。
結(jié)合本節(jié)課教學主線的設(shè)計,設(shè)定本節(jié)課的過程與方法目標如下:
1.通過化歸與轉(zhuǎn)化思想的引導(dǎo),培養(yǎng)學生從已有認知結(jié)構(gòu)出發(fā),尋求解決棘手問題方法的習慣;
2.通過數(shù)形結(jié)合思想的滲透,培養(yǎng)學生主動應(yīng)用數(shù)學思想的意識;
3.通過習題與探究知識的相關(guān)性設(shè)置,引導(dǎo)學生深入探究得出判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法;
4.通過對函數(shù)與方程思想的不斷剖析,促進學生對知識靈活應(yīng)用的能力。
由于本節(jié)課將以教師引導(dǎo),學生探究為主體形式,故設(shè)定本節(jié)課的情感、態(tài)度與價值觀目標如下:
1.讓學生體驗化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學思想在解決數(shù)學問題時的意義與價值;
2.培養(yǎng)學生鍥而不舍的探索精神和嚴密思考的良好學習習慣。
3.使學生感受學習、探索發(fā)現(xiàn)的.樂趣與成功感。
三、教學問題診斷
學生具備的認知基礎(chǔ):
1.基本初等函數(shù)的圖象和性質(zhì);
2.一元二次方程的根和相應(yīng)函數(shù)圖象與x軸的聯(lián)系;
3.將數(shù)與形相結(jié)合轉(zhuǎn)化的意識。
學生欠缺的實際能力:
1.主動應(yīng)用數(shù)形結(jié)合思想解決問題的意識還不強;
2.將未知問題已知化,將復(fù)雜問題簡單化的化歸意識淡薄;
3.從直觀到抽象的概括總結(jié)能力還不夠;
4.概念的內(nèi)涵與外延的探究意識有待提高。
對本節(jié)課的教學,教材是利用一組一元二次方程和二次函數(shù)的關(guān)系來引入函數(shù)零點的。這樣處理,主要是想讓學生在原有二次函數(shù)的認知基礎(chǔ)上,使其知識得到自然的發(fā)生發(fā)展。理解了像二次函數(shù)這樣簡單的函數(shù)零點,再來理解其他復(fù)雜的函數(shù)零點就會容易一些。但學生對如何解一元二次方程以及二次函數(shù)的圖象早就熟練了,這樣的引入過程使學生感到平淡,激發(fā)不起他們的興趣,他們對零點的理解也只會浮于表面,也無法使其體會引入函數(shù)零點的必要性,理解不了方程根存在的本質(zhì)原因是零點的存在。
教材是通過由直觀到抽象的過程,才得到判斷函數(shù)y=f(x)在(a,b)內(nèi)有零點的一種條件的,如果不能有效地對該過程進行引導(dǎo),容易出現(xiàn)學生被動接受,盲目記憶的結(jié)果,而喪失了對學生應(yīng)用數(shù)學思想方法的意識進行培養(yǎng)的機會。
教材中零點存在性定理只表述了存在零點的條件,但對存在零點的個數(shù)并未多做說明,這就要求教師對該定理的內(nèi)涵和外延要有清晰的把握,引導(dǎo)學生探究出只存在一個零點的條件,否則學生對定理的內(nèi)容很容易心存疑慮。
四、本節(jié)課的教法特點以及預(yù)期效果分析
本節(jié)課教法的幾大特點總結(jié)如下:
1.以問題為主線貫穿始終;
2.精心設(shè)置引導(dǎo)性的語言放手讓學生探究;
3.注重在引導(dǎo)學生探究問題解法的過程中滲透數(shù)學思想;
4.在探究過程中引入新知識點,在引入新知識點后適時歸納總結(jié),進行探究階段性成果的應(yīng)用。
由于所設(shè)置的主線問題具有很高的探究價值,所以預(yù)期學生熱情會很高,積極性調(diào)動起來,那整節(jié)課才能活起來;
由于為了更好地組織學生探究所設(shè)置的引導(dǎo)性語言,重在去挖掘?qū)W生內(nèi)心真實的想法和他們最真實體會到的困難,所以通過學生活動會更多地暴露他們在基礎(chǔ)知識掌握方面的缺憾,免不了要隨時糾正對過往知識的錯誤理解;
因為在探究過程中不斷滲透數(shù)學思想,學生對親身經(jīng)歷的解題方法就會有更深的體會,主動應(yīng)用數(shù)學思想的意識在上升,對于主線問題也應(yīng)該可以迎刃而解;
因為在探究過程中引入新知識點,學生對新知識產(chǎn)生的必要性會有更深刻的體會和認識,同時在新知識產(chǎn)生后,又適時地加以應(yīng)用,學生對新知識的應(yīng)用能力不斷提高。
高一數(shù)學教案14
一、指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開,《課程方案》提出了教育要面向世界,面向未來,面向現(xiàn)代化和教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人的指導(dǎo)思想和課程理念和改革要點。使學生掌握從事社會主義現(xiàn)代化建設(shè)和進一步學習現(xiàn)代化科學技術(shù)所需要的數(shù)學知識和基本技能。
(2)培養(yǎng)學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。
(3) 根據(jù)數(shù)學的學科特點,加強學習目的性的教育,提高學生學習數(shù)學的自覺心和興趣,培養(yǎng)學生良好的學習習慣,實事求是的科學態(tài)度,頑強的學習毅力和獨立思考、探索創(chuàng)新的精神。
(4) 使學生具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應(yīng)用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,理解數(shù)學中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎(chǔ),加強綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學習做好準備。
二、學生狀況分析
本學期擔任高一(1)班和(5)班的數(shù)學教學工作,學生共有111人,其中(1)班學生是名校直通班,學生思維活躍,(5)班是火箭班,學生基本素質(zhì)不錯,一些基本知識掌握不是很好,學習積極性需要教師提高,成績以中等為主,中上不多。兩個班中,從軍訓一周來看,學生的學習積極性還是比較高,愛問問題的同學比較多,但由于基礎(chǔ)知識不太牢固,上課效率不是很高。
教材簡析
使用人教版《普通高中課程標準實驗教科書數(shù)學(A版)》,教材在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、應(yīng)用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修4有三章(三角函數(shù);平面向量;三角恒等變換)。
必修1,主要涉及兩章內(nèi)容:
第一章 集合
通過本章學習,使學生感受到用集合表示數(shù)學內(nèi)容時的簡潔性、準確性,幫助學生學會用集合語言表示數(shù)學對象,為以后的學習奠定基礎(chǔ)。
1.了解集合的含義,體會元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;新-課-標-第-一-網(wǎng)
2.理解集合間的包含與相等關(guān)系,能識別給定集合的子集,了解全集與空集的含義;
3.理解補集的含義,會求在給定集合中某個集合的補集;
4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;
5.滲透數(shù)形結(jié)合、分類討論等數(shù)學思想方法;
6.在引導(dǎo)學生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學知識的過程中,培養(yǎng)學生的思維能力。
第二章 函數(shù)的概念與基本初等函數(shù)Ⅰ
教學本章時應(yīng)立足于現(xiàn)實生活從具體問題入手,以問題為背景,按照問題情境數(shù)學活動意義建構(gòu)數(shù)學理論數(shù)學應(yīng)用回顧反思的順序結(jié)構(gòu),引導(dǎo)學生通過實驗、觀察、歸納、抽象、概括,數(shù)學地提出、分析和解決問題。通過本章學習,使學生進一步感受函數(shù)是探索自然現(xiàn)象、社會現(xiàn)象基本規(guī)律的工具和語言,學會用函數(shù)的思想、變化的觀點分析和解決問題,達到培養(yǎng)學生的創(chuàng)新思維的目的。
1.了解函數(shù)概念產(chǎn)生的背景,學習和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識表述、刻畫事物的變化規(guī)律;X|k |b| 1 . c|o |m
2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì),掌握對數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時描述客觀世界變化規(guī)律的重要數(shù)學模型;
3.了解函數(shù)與方程之間的關(guān)系;會用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;
4.培養(yǎng)學生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識與探究能力、數(shù)學建模能力以及數(shù)學交流的能力。
必修4,主要涉及三章內(nèi)容:
第一章 三角函數(shù)
通過本章學習,有助于學生認識三角函數(shù)與實際生活的緊密聯(lián)系,以及三角函數(shù)在解決實際問題中的廣泛應(yīng)用,從中感受數(shù)學的價值,學會用數(shù)學的思維方式觀察、分析現(xiàn)實世界、解決日常生活和其他學科學習中的問題,發(fā)展數(shù)學應(yīng)用意識。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;
3.了解三角函數(shù)的周期性;
4.掌握三角函數(shù)的圖像與性質(zhì)。
第二章 平面向量
在本章中讓學生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數(shù)學和物理中的一些問題,發(fā)展運算能力和解決實際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數(shù)乘的運算;
3.理解平面向量的正交分解及其坐標表示,掌握平面向量的坐標運算;
4.理解平面向量數(shù)量積的含義,會用平面向量的數(shù)量積解決有關(guān)角度和垂直的問題。
第三章 三角恒等變換
通過推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學生在經(jīng)歷和參與數(shù)學發(fā)現(xiàn)活動的基礎(chǔ)上,體會向量與三角函數(shù)的聯(lián)系、向量與三角恒等變換公式的聯(lián)系,理解并掌握三角變換的基本方法。
1.掌握兩角和與差的余弦、正弦、正切公式;
2.掌握二倍角的正弦、余弦、正切公式 ;
3.能正確運用三角公式進行簡單的'三角函數(shù)式的化簡、求值和恒等式證明。
三、教學任務(wù)
本期授課內(nèi)容為必修1和必修4,必修1在期中考試前完成(約在11月5日前完成);必修4在期末考試前完成(約在12月31日前完成)。
四、教學質(zhì)量目標新 課 標
1.獲得必要的數(shù)學基礎(chǔ)知識和基本技能,理解基本的數(shù)學概念、數(shù)學結(jié)論的本質(zhì),體會數(shù)學思想和方法。
2.提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高學生提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4.發(fā)展數(shù)學應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應(yīng)用價值和文化價值,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進目標達成的重點工作及措施
重點工作:
認真貫徹高中數(shù)學新課標精神,樹立新的教學理念,以雙基教學為主要內(nèi)容,堅持抓兩頭、帶中間、整體推進,使每個學生的數(shù)學能力都得到提高和發(fā)展。
分層推進措施
1、重視學生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學生,增強學生學習數(shù)學興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。
2、合理引入課題,由數(shù)學活動、故事、提問、師生交流等方式激發(fā)學生學習興趣,注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
3、培養(yǎng)能力是數(shù)學教學的落腳點。能力是在獲得和運用知識的過程中逐步培養(yǎng)起來的。在銜接教學中,首先要加強基本概念和基本規(guī)律的教學。
加強培養(yǎng)學生的邏輯思維能力和解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4、講清講透數(shù)學概念和規(guī)律,使學生掌握完整的基礎(chǔ)知識,培養(yǎng)學生數(shù)學思維能力 ,抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環(huán)節(jié)(引入、探究、例析、反饋),針對不同的教材內(nèi)容選擇不同教法,提倡創(chuàng)新教學方法,把學生被動接受知識轉(zhuǎn)化主動學習知識。
6、重視數(shù)學應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
7、加強學生良好學習習慣的培養(yǎng)
六、教學時間大致安排
集合與函數(shù)概念 13 課時
基本初等函數(shù) 15
課時
函數(shù)的應(yīng)用 8
課時
三角函數(shù) 24
課時
平面向量 14
課時
三角恒等變換 9
課時
高一數(shù)學教案15
一、教學目標
1、知識與技能:
(1)通過實物操作,增強學生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2、過程與方法:
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
3、情感態(tài)度與價值觀:
(1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
二、教學重點:
讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學用具
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀。
四、教學過程
(一)創(chuàng)設(shè)情景,揭示課題
1、由六根火柴最多可搭成幾個三角形?(空間:4個)
2、在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?
3、展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體。
問題:請根據(jù)某種標準對以上空間物體進行分類。
(二)、研探新知
空間幾何體:多面體(面、棱、頂點):棱柱、棱錐、棱臺;
旋轉(zhuǎn)體(軸):圓柱、圓錐、圓臺、球。
1、棱柱的結(jié)構(gòu)特征:
(1)觀察棱柱的幾何物體以及投影出棱柱的圖片,
思考:它們各自的特點是什么?共同特點是什么?
(學生討論)
(2)棱柱的主要結(jié)構(gòu)特征(棱柱的概念):
、儆袃蓚面互相平行;②其余各面都是平行四邊形;③每相鄰兩上四邊形的公共邊互相平行。
(3)棱柱的表示法及分類:
(4)相關(guān)概念:底面(底)、側(cè)面、側(cè)棱、頂點。
2、棱錐、棱臺的結(jié)構(gòu)特征:
(1)實物模型演示,投影圖片;
(2)以類似的方法,根據(jù)出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念、分類以及表示。
棱錐:有一個面是多邊形,其余各面都是有一個公共頂點的三角形。
棱臺:且一個平行于棱錐底面的.平面去截棱錐,底面與截面之間的部分。
3、圓柱的結(jié)構(gòu)特征:
(1)實物模型演示,投影圖片——如何得到圓柱?
(2)根據(jù)圓柱的概念、相關(guān)概念及圓柱的表示。
4、圓錐、圓臺、球的結(jié)構(gòu)特征:
(1)實物模型演示,投影圖片
——如何得到圓錐、圓臺、球?
(2)以類似的方法,根據(jù)圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示。
5、柱體、錐體、臺體的概念及關(guān)系:
探究:棱柱、棱錐、棱臺都是多面體,它們在結(jié)構(gòu)上有哪些相同點和不同點?三者的關(guān)系如何?當?shù)酌姘l(fā)生變化時,它們能否互相轉(zhuǎn)化?
圓柱、圓錐、圓臺呢?
6、簡單組合體的結(jié)構(gòu)特征:
(1)簡單組合體的構(gòu)成:由簡單幾何體拼接或截去或挖去一部分而成。
(2)實物模型演示,投影圖片——說出組成這些物體的幾何結(jié)構(gòu)特征。
(3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。
(三)排難解惑,發(fā)展思維
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
(四)鞏固深化
練習:課本P7練習1、2;課本P8習題1.1第1、2、3、4、5題
(五)歸納整理:由學生整理學習了哪些內(nèi)容
【高一數(shù)學教案】相關(guān)文章:
高一數(shù)學教案01-17
【薦】高一數(shù)學教案01-31
高一數(shù)學教案【熱】02-01
高一數(shù)學教案【精】02-04
高一數(shù)學教案【熱門】01-24
高一數(shù)學教案【薦】01-24
高一數(shù)學教案【推薦】01-24
【熱門】高一數(shù)學教案02-27
【推薦】高一數(shù)學教案02-25
高一數(shù)學教案(精選20篇)07-10