數(shù)學(xué)八年級上冊教案集合15篇
作為一名辛苦耕耘的教育工作者,通常會被要求編寫教案,借助教案可以恰當(dāng)?shù)剡x擇和運用教學(xué)方法,調(diào)動學(xué)生學(xué)習(xí)的積極性。教案應(yīng)該怎么寫呢?下面是小編收集整理的數(shù)學(xué)八年級上冊教案,僅供參考,希望能夠幫助到大家。
數(shù)學(xué)八年級上冊教案1
第11章平面直角坐標(biāo)系
11。1平面上點的坐標(biāo)
第1課時平面上點的坐標(biāo)(一)
教學(xué)目標(biāo)
【知識與技能】
1。知道有序?qū)崝?shù)對的概念,認(rèn)識平面直角坐標(biāo)系的相關(guān)知識,如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點等。
2。理解坐標(biāo)平面內(nèi)的點與有序?qū)崝?shù)對的一一對應(yīng)關(guān)系,能寫出給定的平面直角坐標(biāo)系中某一點的坐標(biāo)。已知點的坐標(biāo),能在平面直角坐標(biāo)系中描出點。
3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來描述點的位置。
【過程與方法】
1。結(jié)合現(xiàn)實生活中表示物體位置的例子,理解有序?qū)崝?shù)對和平面直角坐標(biāo)系的作用。
2。學(xué)會用有序?qū)崝?shù)對和平面直角坐標(biāo)系中的點來描述物體的位置。
【情感、態(tài)度與價值觀】
通過引入有序?qū)崝?shù)對、平面直角坐標(biāo)系讓學(xué)生體會到現(xiàn)實生活中的問題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價值。
重點難點
【重點】
認(rèn)識平面直角坐標(biāo)系,寫出坐標(biāo)平面內(nèi)點的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點。
【難點】
理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。
教學(xué)過程
一、創(chuàng)設(shè)情境、導(dǎo)入新知
師:如果讓你描述自己在班級中的位置,你會怎么說?
生甲:我在第3排第5個座位。
生乙:我在第4行第7列。
師:很好!我們買的電影票上寫著幾排幾號,是對應(yīng)某一個座位,也就是這個座位可以用排號和列號兩個數(shù)字確定下來。
二、合作探究,獲取新知
師:在以上幾個問題中,我們根據(jù)一個物體在兩個互相垂直的方向上的數(shù)量來表示這個物體
的位置,這兩個數(shù)量我們可以用一個實數(shù)對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?
生:3排5號。
師:對,它們對應(yīng)的不是同一個位置,所以要求表示物體位置的這個實數(shù)對是有序的。誰來說說我們應(yīng)該怎樣表示一個物體的位置呢?
生:用一個有序的實數(shù)對來表示。
師:對。我們學(xué)過實數(shù)與數(shù)軸上的點是一一對應(yīng)的,有序?qū)崝?shù)對是不是也可以和一個點對應(yīng)起來呢?
生:可以。
教師在黑板上作圖:
我們可以在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為
正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構(gòu)成了平面直角坐標(biāo)系,這個平面叫做坐標(biāo)平面。
師:有了平面直角坐標(biāo)系,平面內(nèi)的點就可以用一個有序?qū)崝?shù)對來表示了。現(xiàn)在請大家自己動手畫一個平面直角坐標(biāo)系。
學(xué)生操作,教師巡視。教師指正學(xué)生易犯的錯誤。
教師邊操作邊講解:
如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說P點的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫在前,縱坐標(biāo)寫在后,(3,5)就是點P的坐標(biāo)。在x軸上的點,過這點向y軸作垂線,對應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點,過這點向x軸作垂線,對應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點的橫坐標(biāo)和縱坐標(biāo)都是0,即原點的坐標(biāo)是(0,0)。
教師多媒體出示:
師:如圖,請同學(xué)們寫出A、B、C、D這四點的坐標(biāo)。
生甲:A點的坐標(biāo)是(—5,4)。
生乙:B點的坐標(biāo)是(—3,—2)。
生丙:C點的坐標(biāo)是(4,0)。
生。篋點的坐標(biāo)是(0,—6)。
師:很好!我們已經(jīng)知道了怎樣寫出點的坐標(biāo),如果已知一點的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個點呢?
教師邊操作邊講解:
在x軸上找出橫坐標(biāo)是3的點,過這一點向x軸作垂線,橫坐標(biāo)是3的點都在這條直線上;在y軸上找出縱坐標(biāo)是—2的點,過這一點向y軸作垂線,縱坐標(biāo)是—2的.點都在這條直線上;這兩條直線交于一點,這一點既滿足橫坐標(biāo)為3,又滿足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點。下面請同學(xué)們在方格紙中建立一個平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。
學(xué)生動手作圖,教師巡視指導(dǎo)。
三、深入探究,層層推進
師:兩個坐標(biāo)軸把坐標(biāo)平面劃分為四個區(qū)域,從x軸正半軸開始,按逆時針方向,把這四個區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個象限。在同一象限內(nèi)的點,它們的橫坐標(biāo)的符號一樣嗎?縱坐標(biāo)的符號一樣嗎?
生:都一樣。
師:對,由作垂線求坐標(biāo)的過程,我們知道第一象限內(nèi)的點的橫坐標(biāo)的符號為+,縱坐標(biāo)的符號也為+。你能說出其他象限內(nèi)點的坐標(biāo)的符號嗎?
生:能。第二象限內(nèi)的點的坐標(biāo)的符號為(—,+),第三象限內(nèi)的點的坐標(biāo)的符號為(—,—),第四象限內(nèi)的點的坐標(biāo)的符號為(+,—)。
師:很好!我們知道了一點所在的象限,就能知道它的坐標(biāo)的符號。同樣的,我們由點的坐標(biāo)也能知道它所在的象限。一點的坐標(biāo)的符號為(—,+),你能判斷這點是在哪個象限嗎?
生:能,在第二象限。
四、練習(xí)新知
師:現(xiàn)在我給出幾個點,你們判斷一下它們分別在哪個象限。
教師寫出四個點的坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。
生甲:A點在第三象限。
生乙:B點在第四象限。
生丙:C點不屬于任何一個象限,它在y軸上。
生。篋點不屬于任何一個象限,它在x軸上。
師:很好!現(xiàn)在請大家在方格紙上建立一個平面直角坐標(biāo)系,在上面描出這些點。
學(xué)生作圖,教師巡視,并予以指導(dǎo)。
五、課堂小結(jié)
師:本節(jié)課你學(xué)到了哪些新的知識?
生:認(rèn)識了平面直角坐標(biāo)系,會寫出坐標(biāo)平面內(nèi)點的坐標(biāo),已知坐標(biāo)能描點,知道了四個象限以及四個象限內(nèi)點的符號特征。
教師補充完善。
教學(xué)反思
物體位置的說法和表述物體的位置等問題,學(xué)生在實際生活中經(jīng)常遇到,但可能沒有想到這些問題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個平面直角坐標(biāo)系來表示物體的位置,讓學(xué)生參與到探索獲取新知的活動中,主動學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的實例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實用性,增強了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
第2課時平面上點的坐標(biāo)(二)
教學(xué)目標(biāo)
【知識與技能】
進一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認(rèn)識坐標(biāo)系中的圖形。
【過程與方法】
通過探索平面上的點連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。
【情感、態(tài)度與價值觀】
培養(yǎng)學(xué)生的合作交流意識和探索精神,體驗通過二維坐標(biāo)來描述圖形頂點,從而描述圖形的方法。
重點難點
【重點】
理解平面上的點連接成的圖形,計算圍成的圖形的面積。
【難點】
不規(guī)則圖形面積的求法。
教學(xué)過程
一、創(chuàng)設(shè)情境,導(dǎo)入新知
師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個點。
學(xué)生作圖。
教師邊操作邊講解:
二、合作探究,獲取新知
師:現(xiàn)在我們把這三個點用線段連接起來,看一下得到的是什么圖形?
生甲:三角形。
生乙:直角三角形。
師:你能計算出它的面積嗎?
生:能。
教師挑一名學(xué)生:你是怎樣算的呢?
生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。
師:很好!
教師邊操作邊講解:
大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么
圖形?
學(xué)生完成操作后回答:平行四邊形。
師:你能計算它的面積嗎?
生:能。
教師挑一名學(xué)生:你是怎么計算的呢?
生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:
教師多媒體出示下圖:
數(shù)學(xué)八年級上冊教案2
單元(章)主題第三章 直棱柱任課教師與班級
本課(節(jié))課題3.1 認(rèn)識直棱柱第 1 課時 / 共 課時
教學(xué)目標(biāo)(含重點、難點)及
設(shè)置依據(jù)教學(xué)目標(biāo)
1、了解多面體、直棱柱的有關(guān)概念.
2、會認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.
3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.
教學(xué)重點與難點
教學(xué)重點:直棱柱的有關(guān)概念.
教學(xué)難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達(dá)能力.
教學(xué)準(zhǔn)備每個學(xué)生準(zhǔn)備一個幾何體,(分好學(xué)習(xí)小組)教師準(zhǔn)備各種直棱柱和長方體、立方體模型
教 學(xué) 過 程
內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)
一、創(chuàng)設(shè)情景,引入新課
師:在現(xiàn)實生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒有這樣類似的立體圖形呢?
析:學(xué)生很容易回答出更多的答案。
師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
二、合作交流,探求新知
1.多面體、棱、頂點概念:
師:(出示長方體,立方體模型)這是我們熟悉的'立體圖形,它們是有幾個平面圍成的?都有什么相同特點?
析:一個同學(xué)回答,然后小結(jié)概念:由若干個平面圍成的幾何體,叫做多面體。多面體上相鄰兩個面之間的交線叫做多面體的棱,幾個面的公共頂點叫做多面體的頂點
2.合作交流
師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。
學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描
述其特征。)
師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。
學(xué)生活動:分小組討論。
說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。
師:請大家找出與長方體,立方體類似的物體或模型。
析:舉出實例。(找出區(qū)別)
師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長方形含正方形。
長方體和正方體都是直四棱柱。
3.反饋鞏固
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的相鄰兩條側(cè)棱互相平行且相等。
4.學(xué)以至用
出示例題。(先請學(xué)生單獨考慮,再作講解)
析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)
最后完成例題中的“想一想”
5.鞏固練習(xí)(學(xué)生練習(xí))
完成“課內(nèi)練習(xí)”
三、小結(jié)回顧,反思提高
師:我們這節(jié)課的重點是什么?哪些地方比較難學(xué)呢?
合作交流后得到:重點直棱柱的有關(guān)概念。
直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長方形含正方形。
例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點比較難。
板書設(shè)計
作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)
數(shù)學(xué)八年級上冊教案3
一、教材分析教材的地位和作用:
本節(jié)內(nèi)容是第一課時《軸對稱》,本節(jié)立足于學(xué)生已有的生活經(jīng)驗和數(shù)學(xué)活動經(jīng)歷,從觀察生活中的軸對稱現(xiàn)象開始,從整體的角度認(rèn)識軸對稱的特征;同時本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),使學(xué)生從對圖形的感性認(rèn)識上升到對軸對稱的理性認(rèn)識,為進一步學(xué)習(xí)軸對稱性質(zhì)及后面學(xué)習(xí)等腰三角形和圓等有關(guān)知識奠定基礎(chǔ)。同時這一節(jié)也是聯(lián)系數(shù)學(xué)與生活的橋梁。
二、學(xué)情分析
八年級學(xué)生有一定的知識水平,已經(jīng)初步形成了一定觀察能力、語言表達(dá)能力,這節(jié)課是在學(xué)生學(xué)習(xí)了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學(xué)生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過觀察生活中的實例和動手實踐,讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)軸對稱圖形和軸對稱的概念及它們之間的區(qū)別與聯(lián)系是切實可行的。
三、教學(xué)目標(biāo)及重點、難點的確定
根據(jù)新課程標(biāo)準(zhǔn)、教材內(nèi)容特點、和學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我確定本節(jié)教學(xué)目標(biāo)、重點、難點如下:
(一)教學(xué)目標(biāo):
1、知識技能
(1)理解并掌握軸對稱圖形的概念,對稱軸;能準(zhǔn)確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸.
(2)理解并掌握軸對稱的概念,對稱軸;了解對稱點.
(3)了解軸對稱圖形和軸對稱的聯(lián)系與區(qū)別.
2、過程與方法目標(biāo)
經(jīng)歷“觀察——比較——操作——概括——總結(jié)一應(yīng)用”的學(xué)習(xí)過程,培養(yǎng)學(xué)生的動手實踐能力、抽象思維和語言表達(dá)能力.
3、情感、態(tài)度與價值觀
通過對生活中數(shù)學(xué)問題的探究,進一步提高學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,在自主探究、合作交流的過程中,體會數(shù)學(xué)的重要作用,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,熱愛生活的情感和欣賞圖形的對稱美。
(二)教學(xué)重點:軸對稱圖形和軸對稱的有關(guān)概念.
(三)教學(xué)難點:軸對稱圖形與軸對稱的聯(lián)系、區(qū)別
.四、教法和學(xué)法設(shè)計
本節(jié)課根據(jù)教材內(nèi)容的特點和八年級學(xué)生的知識結(jié)構(gòu)和心理特征。我選擇的:
【教法策略】采用以直觀演示法和實驗發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學(xué)中教學(xué)中通過豐富的圖片展示,創(chuàng)設(shè)出問題情景,誘導(dǎo)學(xué)生思考、操作,教師適時地演示,并運用多媒體化靜為動,激發(fā)學(xué)生探求知識的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學(xué)生始終處于主動探索問題的積極狀態(tài),使不同層次學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。
【學(xué)法策略】:讓學(xué)生在“觀察----比較——操作——概括——檢驗——應(yīng)用”的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
【輔助策略】我利用多媒體課件輔助教學(xué),適時呈現(xiàn)問題情景,以豐富學(xué)生的感性認(rèn)識,增強直觀效果,提高課堂效率
五、說程序設(shè)計:
新的課程標(biāo)準(zhǔn)指出學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實的有意義的,有利于學(xué)生進行觀察、試驗、猜測、驗證、推理與交流等數(shù)學(xué)活動。為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對整個教學(xué)過程進行了設(shè)計。
(一)、觀圖激趣、設(shè)疑導(dǎo)入。
出示圖片,設(shè)計故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時蝴蝶對蜜蜂說:“咱們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。
[設(shè)計意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學(xué)生喜聞樂見的故事情景,激發(fā)了學(xué)生濃厚的`學(xué)習(xí)興趣,
(二)、實踐探索、感悟特征.
《活動一(課件演示)觀察這些圖形有什么特點?》在這個環(huán)節(jié)中我首先出示一組常見的具有代表性的典型的軸對稱圖形,出示后先讓學(xué)生自己觀察,并引導(dǎo)學(xué)生感知,無論是隨風(fēng)起舞的風(fēng)箏,凌空翱翔的飛機,還是古今中外各式風(fēng)格的典型建筑很多圖形都給我們以美得感受。然后,教師適時提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學(xué)生觀察、猜想、探究、討論,教師可以適當(dāng)?shù)匾龑?dǎo),讓學(xué)生發(fā)現(xiàn):把一個圖形的某一部分沿著一條直線翻折180度后能與這個圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導(dǎo)學(xué)生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。
為了進一步認(rèn)識軸對稱圖形的特點又出示了一組練習(xí)
(練習(xí)1)這是一組常見幾何圖形,要求學(xué)生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸
[設(shè)計意圖]通過這個練習(xí)題不僅讓學(xué)生鞏固了軸對稱圖形的概念,而且讓學(xué)生認(rèn)識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學(xué)生認(rèn)識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數(shù)條,對稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。
(練習(xí)2)國家的一個象征,觀察下面的國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進一步鞏固了軸對稱圖形的概念,培養(yǎng)了學(xué)生的觀察能力、想象能力,同時通過展示各國的國旗,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且也拓展了學(xué)生的知識面。
(三)、動手操作、再度探索新知。
將一張紙對折,用筆尖扎出一個圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學(xué)中注重學(xué)生活動,鼓勵學(xué)生親自實踐,積極思考,在樂學(xué)的氛圍中,培養(yǎng)學(xué)生的動手能力,從而引出軸對稱概念。
再次引導(dǎo)學(xué)生討論、歸納得出軸對稱的概念……。之后再結(jié)合動畫演示加深對軸對稱概念的理解,進而引出對稱軸、對稱點的概念.并結(jié)合圖形加以認(rèn)識。
(四)、鞏固練習(xí)、升華新知。
出示幾幅圖形,請同學(xué)們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱,
在這組練習(xí)中讓學(xué)生動手、動口、動眼、動腦,充分調(diào)動了學(xué)生的各種感官參與學(xué)習(xí),既加深了對兩個概念的理解,又鍛煉了同學(xué)的各方面能力。完成這組練習(xí)題后讓學(xué)生,歸納軸對稱圖形及軸對稱區(qū)別與聯(lián)系,先讓學(xué)生自己歸納,然后用多媒體展示。
(課件演示)軸對稱圖形及兩個圖形成軸對稱區(qū)別與聯(lián)系
(五)、綜合練習(xí)、發(fā)展思維。
1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。
2、判斷:
生活中不僅有些物體的形狀是軸對稱圖形,我們所學(xué)的數(shù)字、字母和漢字中也有一些可以看成軸對稱圖形。
(1)下面的數(shù)字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸?
0123456789ABCDEFGH
3、像這樣寫法的漢字哪些是軸對稱圖形?
口工用中由日直水清甲
(這幾道題的練習(xí)做到了知識性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計,不但活躍了課堂氣氛,又檢查了學(xué)生掌握新知的情況,而且激發(fā)了學(xué)生的學(xué)習(xí)興趣,又讓學(xué)生感到數(shù)學(xué)就在自己的身邊)
(六)歸納小結(jié)、布置作業(yè)
[設(shè)計意圖]培養(yǎng)學(xué)生歸納和語言表達(dá)能力,鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進行自我評價。作業(yè)布置要有層次,照顧學(xué)生個體差異使不同的人在數(shù)學(xué)上獲得不同的發(fā)展!
六、設(shè)計說明
這節(jié)課,我依據(jù)課程標(biāo)準(zhǔn)、教材特點、遵循學(xué)生的認(rèn)知規(guī)律。通過六個環(huán)節(jié)的教學(xué)設(shè)計,通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學(xué)生輕松掌握了軸對稱圖形與關(guān)于直線成軸對稱兩個概念,指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過程中讓學(xué)生動口、動手、動眼、動腦,使學(xué)生學(xué)有興趣、學(xué)有所獲。這就是我對本節(jié)課的理解和說明。
數(shù)學(xué)八年級上冊教案4
教學(xué)目標(biāo):
1、知識目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計的意圖。認(rèn)識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實生活中的應(yīng)用,能夠靈活運用軸對稱、平移、旋轉(zhuǎn)的組合,設(shè)計出簡單的圖案。
2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。
3、情感體驗點:經(jīng)歷對典型圖案設(shè)計意圖的分析,進一步發(fā)展學(xué)生的空間觀念,增強審美意識,培養(yǎng)學(xué)生積極進取的生活態(tài)度。
重點與難點:
重點:靈活運用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進行的圖案設(shè)計。
難點:分析典型圖案的設(shè)計意圖。
疑點:在設(shè)計的圖案中清晰地表現(xiàn)自己的設(shè)計意圖
教具學(xué)具準(zhǔn)備:
提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。
教學(xué)過程設(shè)計:
1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的對象。(展示課本圖3—23)
明確在欣賞了圖案后,簡單地復(fù)習(xí)平移、旋轉(zhuǎn)的概念,為下面圖案的`設(shè)計作好理論準(zhǔn)備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學(xué)生初步了解圖案的設(shè)計中常常運用圖形變換的思想方法,為學(xué)生自己設(shè)計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學(xué)生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。
2、課本
1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。
評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學(xué)生逐步能夠進行圖案設(shè)計,同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點。
評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。
(二)課內(nèi)練習(xí)
(1) 以小組為單位,由每組指定一個同學(xué)展示該組搜集得到的圖案,并在全班交流。
(2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進行圖案設(shè)計,并簡要說明自己的設(shè)計意圖。
(三)議一議
生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進行交流。
(四)課時小結(jié)
本課時的重點是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計的基本方法,并能運用這些變換設(shè)計出一些簡單的圖案。
通過今天的學(xué)習(xí),你對圖案的設(shè)計又增加了哪些新的認(rèn)識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設(shè)計,而且設(shè)計的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計一定要新穎,獨特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)
八年級數(shù)學(xué)上冊教案(五)延伸拓展
進一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計它,并結(jié)合實際背景分析它的設(shè)計意圖。
數(shù)學(xué)八年級上冊教案5
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系.
2.內(nèi)容解析
三角形是一種最基本的幾何圖形,是認(rèn)識其他圖形的基礎(chǔ),在本章中,學(xué)好了三角形的有關(guān)概念和性質(zhì),為進一步學(xué)習(xí)多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關(guān)系,使學(xué)生對三角形的有關(guān)知識有更為深刻的理解.
本節(jié)課的教學(xué)重點:三角形中的相關(guān)概念和三角形三邊關(guān)系.
本節(jié)課的教學(xué)難點:三角形的三邊關(guān)系.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)了解三角形中的相關(guān)概念,學(xué)會用符號語言表示三角形中的.對應(yīng)元素.
(2)理解并且靈活應(yīng)用三角形三邊關(guān)系.
2.教學(xué)目標(biāo)解析
(1)結(jié)合具體圖形,識三角形的概念及其基本元素.
(2)會用符號、字母表示三角形中的相關(guān)元素,并會按邊對三角形進行分類.
(3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會運用這一性質(zhì)來解決問題.
三、教學(xué)問題診斷分析
在探索三角形三邊關(guān)系的過程中,讓學(xué)生經(jīng)歷觀察、探究、推理、交流等活動過程,培養(yǎng)學(xué)生的和推理能力和合作學(xué)習(xí)的精神.
四、教學(xué)過程設(shè)計
1.創(chuàng)設(shè)情境,提出問題
問題回憶生活中的三角形實例,結(jié)合你以前對三角形的了解,請你給三角形下一個定義.
師生活動:先讓學(xué)生分組討論,然后各小組派代表發(fā)言,針對學(xué)生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學(xué)生對三角形概念的理解.
【設(shè)計意圖】三角形概念的獲得,要讓學(xué)生經(jīng)歷其描述的過程,借此培養(yǎng)學(xué)生的語言表述能力,加深學(xué)生對三角形概念的理解.
2.抽象概括,形成概念
動態(tài)演示“首尾順次相接”這個的動畫,歸納出三角形的定義.
師生活動:
三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
【設(shè)計意圖】讓學(xué)生體會由抽象到具體的過程,培養(yǎng)學(xué)生的語言表述能力.
補充說明:要求學(xué)生學(xué)會三角形、三角形的頂點、邊、角的概念以及幾何表達(dá)方法.
師生活動:結(jié)合具體圖形,教師引導(dǎo)學(xué)生分析,讓學(xué)生學(xué)會由文字語言向幾何語言的過渡.
【設(shè)計意圖】進一步加深學(xué)生對三角形中相關(guān)元素的認(rèn)知,并進一步熟悉幾何語言在學(xué)習(xí)中的應(yīng)用.
3.概念辨析,應(yīng)用鞏固
如圖,不重復(fù),且不遺漏地識別所有三角形,并用符號語言表示出來.
1.以AB為一邊的三角形有哪些?
2.以∠D為一個內(nèi)角的三角形有哪些?
3.以E為一個頂點的三角形有哪些?
4.說出ΔBCD的三個角.
師生活動:引導(dǎo)學(xué)生從概念出發(fā)進行思考,加深學(xué)生對三角形中相關(guān)元素概念的理解.
4.拓廣延伸,探究分類
我們知道,按照三個內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對三角形進行分類,又應(yīng)該如何分呢?小組之間同學(xué)進行交流并說說你們的想法.
師生活動:通過討論,學(xué)生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導(dǎo)學(xué)生了解等腰三角形與等邊三角形的聯(lián)系,強化學(xué)生對三角形按邊分類的理解.
數(shù)學(xué)八年級上冊教案6
一、知識點:
1.坐標(biāo)(x,y)與點的對應(yīng)關(guān)系
有序數(shù)對:有順序的兩個數(shù)x與y組成的數(shù)對,記作(x,y);
注意:x、y的先后順序?qū)ξ恢玫挠绊憽?/p>
2.平面直角坐標(biāo)系:
(1)、構(gòu)成坐標(biāo)系的各種名稱:四個象限和兩條坐標(biāo)軸
(2)、各種特殊點的坐標(biāo)特點:坐標(biāo)軸上的點至少有一個坐標(biāo)
為0;X軸上的點的縱坐標(biāo)為0,y軸上點的橫坐標(biāo)為0,原點
的坐標(biāo)為(0,0)。
3.坐標(biāo)(x,y)的幾何意義
平面直角坐標(biāo)系是代數(shù)與幾何聯(lián)系的紐帶,坐標(biāo)(x,y)有某
幾何意義,如點A(-3,2)它到x軸、y軸、原點的距離分別是︱x︱
=︱2︱=2,︱y︱=︱-3︱=3,OA = 。
4.注意各象限內(nèi)點的坐標(biāo)的符號
點P(x,y)在第一象限內(nèi),則x0,y0,反之亦然.
點P(x,y)在第二象限內(nèi),則x0,y0,反之亦然.
點P(x,y)在第三象限內(nèi),則x0,y0,反之亦然.
點P(x,y)在第四象限內(nèi),則x0,y0,反之亦然.
5.平行于坐標(biāo)軸的直線的點的坐標(biāo)特點:
平行于x軸(或橫軸)的直線上的點的這 縱 坐標(biāo)相同;
平行于y軸(或縱軸)的直線上的點的 橫 坐標(biāo)相同。
6.各象限的角平分線上的點的坐標(biāo)特點:
第一、三象限角平分線上的點的橫縱坐標(biāo) 相同 ;
第二、四象限角平分線上的點的橫縱坐標(biāo) 互為相反數(shù) 。
7.與坐標(biāo)軸、原點對稱的點的坐標(biāo)特點:
關(guān)于x軸對稱的點的橫坐標(biāo) 相同 ,縱坐標(biāo) 互為相反數(shù)
關(guān)于y軸對稱的點的縱坐標(biāo) 相同 ,橫坐標(biāo) 互為相反數(shù)
關(guān)于原點對稱的點的橫坐標(biāo)、縱坐標(biāo)都 互為相反數(shù)
8.特殊位置點的特殊坐標(biāo):
坐標(biāo)軸上點P(x,y) 連線平行于坐標(biāo)軸的點 點P(x,y)在各象限的坐標(biāo)特點
X軸 Y軸 原點 平行X軸 平行Y軸 第一象限 第二象限 第三象限 第四象限
(x,0) (0,y) (0,0) 縱坐標(biāo) 相同
橫坐標(biāo) 不同 橫坐標(biāo) 相同
縱坐標(biāo) 不同
9.利用平面直角坐標(biāo)系繪制區(qū)域內(nèi)一些點分布情況平面圖過程如下:
(1)建立坐標(biāo)系,選擇一個適當(dāng)?shù)膮⒄拯c為原點,確定x軸、y軸的正方向;
(2)根據(jù)具體問題確定適當(dāng)?shù)谋壤,在坐?biāo)軸上標(biāo)出單位長度;
(3)在坐標(biāo)平面內(nèi)畫出這些點,寫出各點的坐標(biāo)和各個地點的名稱。
10.用坐標(biāo)表示平移:見下圖
二、典型訓(xùn)練:
1.位置的確定
1、如圖,圍棋盤的左下角呈現(xiàn)的是一局圍棋比賽中的幾手棋.為記錄棋譜方便,橫線用數(shù)字表示.縱線用英文字母表示,這樣,黑棋①的位置可記為(C,4),白棋②的位置可記為(E,3),則白棋⑨的位置應(yīng)記為 _____.
2、如圖所示的象棋盤上,若帥位于點(1,﹣3)上,相位于點(3,﹣3)上,則炮位于點( )
A、(﹣1,1) B、(﹣l,2) C、(﹣2,0) D、(﹣2,2)
2.平面直角坐標(biāo)系內(nèi)的點的特點: 一)確定字母取值范圍:
1、點A(m+3,m+1)在x軸上,則A點的坐標(biāo)為( )
A (0,-2) B、(2,0) C、(4,0) D、(0,-4)
2、若點M(1, )在第四象限內(nèi),則 的取值范圍是 .
3、已知點P(x,y+1)在第二象限,則點Q(﹣x+2,2y+3)在第 象限.
二)確定點的坐標(biāo):
1、點 在第二象限內(nèi), 到 軸的距離是4,到 軸的距離是3,那么點 的坐標(biāo)為( )
A.(-4,3) B.(-3, -4) C.(-3, 4) D.(3, -4)
2、若點P在x軸的下方,y軸的左方,到每條坐標(biāo)軸的距離都是3,則點P的坐標(biāo)為( )
A、(3,3) B、(﹣3,3) C、(﹣3,﹣3) D、(3,﹣3)
3、在x軸上與點(0,﹣2)距離是4個單位長度的點有 .
4、若點(5﹣a,a﹣3)在第一、三象限角平分線上,則a= .
三)確定對稱點的坐標(biāo):
1、P(﹣1,2)關(guān)于x軸對稱的點是 ,關(guān)于y軸對稱的點是 ,關(guān)于原點對稱的點是 .
2、已知點 關(guān)于 軸的對稱點為 ,則 的值是( )
A. B. C. D.
3、在平面直角坐標(biāo)系中,將點A(1,2)的橫坐標(biāo)乘以﹣1,縱坐標(biāo)不變,
得到點A,則點A和點A的關(guān)系是( )
A、關(guān)于x軸對稱 B、將點A向x軸負(fù)方向平移一個單位得點A
C、關(guān)于原點對稱 D、關(guān)于y軸對稱
3.與平移有關(guān)的問題
1、通過平移把點A(2,﹣3)移到點A(4,﹣2),按同樣的平移方式,點B(3,1)移到點B,則點B的坐標(biāo)是 .
2、如圖,點A坐標(biāo)為(-1,1),將此小船ABCD向左平移2個單位,再向上平移3個單位得ABCD.
(1)畫出平面直角坐標(biāo)系;
(2)畫出平移后的小船ABCD,
寫出A,B,C,D各點的坐標(biāo).
3、在平面直角坐標(biāo)系中,□ABCD的頂點A、B、D的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點C的坐標(biāo)是( )
A.(3,7) B.(5,3) C.(7,3) D.(8,2)
4.建立直角坐標(biāo)系
1、如圖1是某市市區(qū)四個旅游景點示意圖(圖中每個小正方形的邊長為1個單位長度),請以某景點為原點,建立平面直角坐標(biāo)系,用坐標(biāo)表示下列景點的位置.①動物園 ,②烈士陵園 .
2、如圖,機器人從A點,沿著西南方向,行了4 個單位到達(dá)B點后,觀察到原點O在它的南偏東60的方向上,則原來A的坐標(biāo)為 (結(jié)果保留根號).
3、如圖,△AOB是邊長為5的等邊三角形,則A,B兩點的坐標(biāo)分別是A ,B .
5.創(chuàng)新題: 一)規(guī)律探索型:
1、如圖2,已知Al(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、.則點A2015的坐標(biāo)為________.
二)閱讀理解型:
1、在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點叫做整點,設(shè)坐標(biāo)軸的單位長度為1cm,整點P從原點O出發(fā),速度為1cm/s,且整點P作向上或向右運動(如圖1所示.運動時間(s)與整點(個)的關(guān)系如下表:
整點P從原點出發(fā)的時間(s) 可以得到整點P的坐標(biāo) 可以得到整點P的個數(shù)
1 (0,1)(1,0) 2
2 (0,2)(1,1),(2,0) 3
3 (0,3)(1,2)(2,1)(3,0) 4
根據(jù)上表中的規(guī)律,回答下列問題:
(1)當(dāng)整點P從點O出發(fā)4s時,可以得到的整點的個數(shù)為________個.
(2)當(dāng)整點P從點O出發(fā)8s時,在直角坐標(biāo)系中描出可以得到的所有整點,并順次連結(jié)這些整點.
(3)當(dāng)整點P從點O出發(fā)____s時,可以得到整點(16,4)的位置.
三、易錯題:
1、 已知點P(4,a)到橫軸的距離是3,則點P的坐標(biāo)是_____.
2、 已知點P(m,n)到x軸的距離為3,到y(tǒng)軸的距離等于5,則點P的坐標(biāo)是_____.
3、 已知點P(m,2m-1)在x軸上,則P點的坐標(biāo)是_______.
4、如圖,四邊形ABCD各個頂點的坐標(biāo)分別為 (2,8),(11,6),(14,0),(0,0)。
(1)確定這個四邊形的.面積;
(2)如果把原來ABCD各個頂點縱坐標(biāo)保持不變,橫坐標(biāo)增加2,所得的四邊形面積又是多少?
四、提高題:
1、在平面直角坐標(biāo)系中,點(-2,4)所在的象限是( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
2、若a0,則點P(-a,2)應(yīng)在 ( )
A.第象限內(nèi) B.第二象限內(nèi) C.第三象限內(nèi) D.第四象限內(nèi)
3、已知 ,則點 在第______象限.
4、若 +(b+2)2=0,則點M(a,b)關(guān)于y軸的對稱點的坐標(biāo)為______.
5、點P(1,2)關(guān)于y軸對稱點的坐標(biāo)是 . 已知點A和點B(a,-b)關(guān)于y軸對稱,求點A關(guān)于原點的對稱點C的坐標(biāo)___________.
6、已知點 A(3a-1,2-b),B(2a-4,2b+5).
若A與B關(guān)于x軸對稱,則a=________,b=_______;若A與B關(guān)于y軸對稱,則a=________,b=_______;
若A與B關(guān)于原點對稱,則a=________,b=_______.
7、學(xué)生甲錯將P點的橫坐標(biāo)與縱坐標(biāo)的次序顛倒,寫成(m,n),學(xué)生乙錯將Q點的坐標(biāo)寫成它關(guān)于x軸對稱點的坐標(biāo),寫成(-n,-m),則P點和Q點的位置關(guān)系是_________.
8、點P(x,y)在第四象限內(nèi),且|x|=2,|y| =5,P點關(guān)于原點的對稱點的坐標(biāo)是_______.
9、以點(4,0)為圓心,以5為半徑的圓與y軸交點的坐標(biāo)為______.
10、點P( , )到x軸的距離為________,到y(tǒng)軸的距離為_________。
11、點P(m,-n)與兩坐標(biāo)軸的距離___________________________________________________。
12、已知點P到x軸和y軸的距離分別為3和4,則P點坐標(biāo)為__________________________.
13、點P在第二象限,若該點到x軸的距離為,到y(tǒng)軸的距離為1,則點P的坐標(biāo)是( )
A.( 1, ) B.( ,1) C.( , ) D.(1, )
14、點A(4,y)和點B(x, ),過A,B兩點的直線平行x軸,且 ,則 ______, ______.
15、已知等邊三角形ABC的邊長是4,以AB邊所在的直線為x軸,AB邊的中點為原點,建立直角坐標(biāo)系,則頂點C的坐標(biāo)為________________.
16、通過平移把點A(2,-3)移到點A(4,-2),按同樣的平移方式,點B(3,1)移到點B,則點B的坐標(biāo)是_____________.
17、如圖11,若將△ABC繞點C順時針旋轉(zhuǎn)90后得到△ABC,則A點的對應(yīng)點A的坐標(biāo)是( )
A.(-3,-2) B.(2,2) C.(3,0) D.(2,1)
18、平面直角坐標(biāo)系 內(nèi)有一點A(a,b),若ab=0,則點A的位置在( ).
A.原點 B. x軸上 C.y 軸上 D.坐標(biāo)軸上
19、已知等邊△ABC的兩個頂點坐標(biāo)為A(-4,0)、B(2,0),則點C的坐標(biāo)為______,△ABC的面積為______.
20、(1)將下圖中的各個點的縱坐標(biāo)不變,橫坐標(biāo)都乘以-1,與原圖案相比,所得圖案有什么變化?
(2)將下圖中的各個點的橫坐標(biāo)不變,縱坐標(biāo)都乘以-1,與原圖案相比,所得圖案有什么變化?
(3)將下圖中的各個點的橫坐標(biāo)都乘以-2,縱坐標(biāo)都乘以-2,與原圖案相比,所得圖案有什么變化?
數(shù)學(xué)八年級上冊教案7
教學(xué)目標(biāo)
。保J(rèn)識變量、常量.
。玻畬W(xué)會用含一個變量的代數(shù)式表示另一個變量.
教學(xué)重點
。保J(rèn)識變量、常量.
。玻檬阶颖硎咀兞块g關(guān)系.
教學(xué)難點
用含有一個變量的式子表示另一個變量.
教學(xué)過程
Ⅰ.提出問題,創(chuàng)設(shè)情境
情景問題:一輛汽車以60千米/小時的速度勻速行駛,行駛里程為s千米.行駛時間為t小時.
1.請同學(xué)們根據(jù)題意填寫下表:
t/時 1 2 3 4 5
s/千米
。玻谝陨线@個過程中,變化的量是________.變變化的量是__________.
。常囉煤瑃的式子表示s.
Ⅱ.導(dǎo)入新課
首先讓學(xué)生思考上面的幾個問題,可以互相討論一下,然后回答.
從題意中可以知道汽車是勻速行駛,那么它1小時行駛60千米,2小時行駛2×60千米,即120千米,3小時行駛3×60千米,即180千米,4小時行駛4×60千米,即240千米,5小時行駛5×60千米,即300千米……因此行駛里程s千米與時間t小時之間有關(guān)系:s=60t.其中里程s與時間t是變化的量,速度60千米/小時是不變的量.
這種問題反映了勻速行駛的汽車所行駛的里程隨行駛時間的變化過程.其實現(xiàn)實生活中有好多類似的問題,都是反映不同事物的變化過程,其中有些量的值是按照某種規(guī)律變化,其中有些量的是按照某種規(guī)律變化的,如上例中的時間t、里程s,有些量的數(shù)值是始終不變的,如上例中的速度60千米/小時.
[活動一]
1.每張電影票售價為10元,如果早場售出票150張,日場售出205張,晚場售出310張.三場電影的票房收入各多少元.設(shè)一場電影售票x張,票房收入y元.怎樣用含x的式子表示y?
2.在一根彈簧的下端懸掛重物,改變并記錄重物的質(zhì)量,觀察并記錄彈簧長度的變化,探索它們的變化規(guī)律.如果彈簧原長10cm,每1kg重物使彈簧伸長0.5cm,怎樣用含有重物質(zhì)量m的式子表示受力后的彈簧長度?
引導(dǎo)學(xué)生通過合理、正確的思維方法探索出變化規(guī)律.
結(jié)論:
。保鐖鲭娪捌狈渴杖耄150×10=1500(元)
日場電影票房收入:205×10=20xx(元)
晚場電影票房收入:310×10=3100(元)
關(guān)系式:y=10x
。玻畳1kg重物時彈簧長度: 1×0.5+10=10.5(cm)
掛2kg重物時彈簧長度:2×0.5+10=11(cm)
掛3kg重物時彈簧長度:3×0.5+10=11.5(cm)
關(guān)系式:L=0.5m+10
通過上述活動,我們清楚地認(rèn)識到,要想尋求事物變化過程的規(guī)律,首先需確定在這個過程中哪些量是變化的,而哪些量又是不變的.在一個變化過程中,我們稱數(shù)值發(fā)生變化的量為變量(variable),那么數(shù)值始終不變的量稱之為常量(constant).如上述兩個過程中,售出票數(shù)x、票房收入y;重物質(zhì)量m,彈簧長度L都是變量.而票價10元,彈簧原長10cm……都是常量.
[活動二]
。保嬕粋面積為10cm2的圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢?怎樣用含有圓面積S的式子表示圓半徑r?
。玻10m長的繩子圍成矩形,試改變矩形長度.觀察矩形的面積怎樣變化.記錄不同的矩形的長度值,計算相應(yīng)的矩形面積的.值,探索它們的變化規(guī)律:設(shè)矩形的長度為xcm,面積為Scm2.怎樣用含有x的式子表示S?
結(jié)論:
。保笠阎娣e的圓的半徑,可利用圓的面積公式經(jīng)過變形求出S= r2r=
面積為10cm2的圓半徑r= ≈1.78(cm)
面積為20cm2的圓半徑r= ≈2.52(cm)
關(guān)系式:r=
。玻蚓匦蝺山M對邊相等,所以它一條長與一條寬的和應(yīng)是周長10cm的一半,即5cm.
若長為1cm,則寬為5-1=4(cm)
據(jù)矩形面積公式:S=1×4=4(cm2)
若長為2cm,則寬為5-2=3(cm)
面積S=2×(5-2)=6(cm2)
… …
若長為xcm,則寬為5-x(cm)
面積S=x?(5-x)=5x-x2(cm2)
從以上兩個題中可以看出,在探索變量間變化規(guī)律時,可利用以前學(xué)過的一些有關(guān)知識公式進行分析尋找,以便盡快找出之間關(guān)系,確定關(guān)系式.
Ⅲ.隨堂練習(xí)
。保徺I一些鉛筆,單價0.2元/支,總價y元隨鉛筆支數(shù)x變化,指出其中的常量與變量,并寫出關(guān)系式.
。玻粋三角形的底邊長5cm,高h(yuǎn)可以任意伸縮.寫出面積S隨h變化關(guān)系式,并指出其中常量與變量.
解:1.買1支鉛筆價值1×0.2=0.2(元)
買2支鉛筆價值2×0.2=0.4(元)
……
買x支鉛筆價值x×0.2=0.2x(元)
所以y=0.2x
其中單價0.2元/支是常量,總價y元與支數(shù)x是變量.
。玻鶕(jù)三角形面積公式可知:
當(dāng)高h(yuǎn)為1cm時,面積S= ×5×1=2.5cm2
當(dāng)高h(yuǎn)為2cm時,面積S= ×5×2=5cm2
… …
當(dāng)高為hcm,面積S= ×5×h=2.5hcm2
數(shù)學(xué)八年級上冊教案8
一、創(chuàng)設(shè)情景,明確目標(biāo)
多媒體展示:內(nèi)角三兄弟之爭
在一個直角三角形里住著三個內(nèi)角,平時,它們?nèi)值芊浅F結(jié).可是有一天,老二突然不高興,發(fā)起脾氣來,它指著老大說:“你憑什么度數(shù)最大,我也要和你一樣大!”“不行啊!”老大說:“這是不可能的,否則,我們這個家就再也圍不起來了……”“為什么?”老二很納悶.同學(xué)們,你們知道其中的道理嗎?
二、自主學(xué)習(xí),指向目標(biāo)
學(xué)習(xí)至此:請完成《學(xué)生用書》相應(yīng)部分.
三、合作探究,達(dá)成目標(biāo)
三角形的內(nèi)角和
活動一:見教材P11“探究”.
展示點評:從探究的操作中,你能發(fā)現(xiàn)證明的思路嗎?圖中的直線L與△ABC的邊BC有什么關(guān)系?你能想出證明“三角形內(nèi)角和的方法”嗎?證明命題的步驟是什么?證明三角形的內(nèi)角和定理.
小組討論:有沒有不同的證明方法?
反思小結(jié):證明是由題設(shè)出發(fā),經(jīng)過一步步的推理,最后推出結(jié)論正確的過程.三角形三個內(nèi)角的和等于180°.
針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分
三角形內(nèi)角和定理的應(yīng)用
活動二:見教材P12例1
展示點評:題中所求的角是哪個三角形的一個內(nèi)角嗎?你能想出幾種解法?
小組討論:三角形的內(nèi)角和在解題時,如何靈活應(yīng)用?
反思小結(jié):當(dāng)三角形中已知兩角的讀數(shù)時,可直接用內(nèi)角和定理求第三個內(nèi)角;當(dāng)三角形中未直接給出兩內(nèi)角的度數(shù)時,可根據(jù)它們之間的關(guān)系列方程解決.
針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分
四、總結(jié)梳理,內(nèi)化目標(biāo)
1.本節(jié)學(xué)習(xí)的數(shù)學(xué)知識是:三角形的內(nèi)角和是180°.
2.三角形內(nèi)角和定理的證明思路是什么?
3.數(shù)學(xué)思想是轉(zhuǎn)化、數(shù)形結(jié)合.
《三角形綜合應(yīng)用》精講精練
1. 現(xiàn)有3 cm,4 cm,7 cm,9 cm長的四根木棒,任取其中三根組成一個三角形,那么可以組成的三角形的個數(shù)是( )
A.1個 B.2個 C.3個 D.4個
2. 如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依次為2,3,4,6,且相鄰兩木條的.夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則任兩螺絲之間的距離最大值是( )
A.5 B.6 C.7 D.10
3.下列五種說法:①三角形的三個內(nèi)角中至少有兩個銳角;
、谌切蔚娜齻內(nèi)角中至少有一個鈍角;③一個三角形中,至少有一個角不小于60°;④鈍角三角形中,任意兩個內(nèi)角的和必大于90°;⑤直角三角形中兩銳角互余.其中正確的說法有________(填序號).
《11.2與三角形有關(guān)的角》同步測試
4.(1)如圖①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,∠ACD與∠B有什么關(guān)系?為什么?
(2)如圖②,在Rt△ABC中,∠C=90°,D,E分別在AC,AB上,且∠ADE=∠B,判斷△ADE的形狀.為什么?
(3)如圖③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,點C,B,E在同一直線上,∠A與∠D有什么關(guān)系?為什么?
數(shù)學(xué)八年級上冊教案9
、.教學(xué)任務(wù)分析
教學(xué)目標(biāo)
知識與技能 使學(xué)生理解正比例函數(shù)的概念,會用描點法畫正比例函數(shù)圖象,掌握正比例函數(shù)的性質(zhì).
過程與能力 培養(yǎng)學(xué)生數(shù)學(xué)建模的能力.
情感與態(tài)度 實例引入,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
教學(xué)重點 探索正比例函數(shù)的性質(zhì).
教學(xué)難點 從實際問題情境中建立正比例函數(shù)的數(shù)學(xué)模型.
Ⅱ.教學(xué)過程設(shè)計
問題及師生行為 設(shè)計意圖
一、創(chuàng)設(shè)問題,激發(fā)興趣
【問題1】將下列問題中的變量用函數(shù)表示出來:
(1)小明騎自行車去郊游,速度為4km/h,其行駛路程y隨時間x變化而變化;
(2)三角形的底為10cm,其面積y隨高x的變化而變化;
(3)筆記本的單價為3元,買筆記本所要的錢數(shù)y隨作業(yè)本數(shù)量x的變化而變化.
解:(1)y=4x;(2)y=5x;(3)y=3x.
教師提出問題,學(xué)生獨立思考并回答問題.
教師點評,并且提醒學(xué)生注意用x表示y. 問題引入,為新知作好鋪墊.
二、誘導(dǎo)參與,探究新知
思考:觀察函數(shù)關(guān)系式:
、 y=4x; ② y=5x; ③ y=3x.
這些函數(shù)有什么特點?
都是y等于一個常量與x的乘積.
教師提出問題,并引導(dǎo)學(xué)生觀察:
學(xué)生觀察思考并回答問題.
三、引導(dǎo)歸納,提煉新知
(板書)正比例函數(shù)的概念:
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù).
注意:x 的取值范圍是全體實數(shù).
由教師引導(dǎo),學(xué)生觀察得出結(jié)論.體現(xiàn)學(xué)生為主體,教師為主導(dǎo)的關(guān)系.
通過板書,突出本節(jié)課的重點.
四、指導(dǎo)應(yīng)用,發(fā)展能力
1.下列函數(shù)是否是正比例函數(shù)?比例系數(shù)是多少?
(1) 是,比例系數(shù)k=8. (2) 不是.
(3) 是,比例系數(shù)k= . (4) 不是.
填空
1.若函數(shù)y=(2m2+8)xm2-8+(m+3)是正比例函數(shù),則m的值是___-3____.
題 1請學(xué)生口答, 題2學(xué)生獨立完成,并到黑板板書,教師評價書寫規(guī)范.
在本次活動中,教師要關(guān)注:
學(xué)生能否準(zhǔn)確地理解正比例函數(shù)的定義,注意二次項系數(shù)不能為0.
五、探究新知
例1 畫出正比例函數(shù)y=x的圖象.
解:(1)列表:
x --- -2 -1 0 1 2 ---
y --- -2 -1 0 1 2 ---
畫出函數(shù)y=x的`圖象.
(1)列表: (2)描點: (3)連線:
想一想
除了用描點法外,還有其他簡單的方法畫正比例函數(shù)圖象嗎?
根據(jù)兩點確定一條直線,我們可以經(jīng)過原點與點(1,k)畫直線,即兩點法.
同理,畫出y=-x的圖象.
師生共同分析:兩個圖象的共同點:都是經(jīng)過原點的直線.不同點:函數(shù)y=x的圖象從左向右呈上升狀態(tài),即隨著x的增大y也增大,經(jīng)過第一、三象限.
函數(shù)y=-x的圖象從左向右呈下降狀態(tài),即隨x增大y反而減小,經(jīng)過第二、四象限.
歸納:一般地,正比例函數(shù)y=kx(k是常數(shù),k≠ 0)的圖象是一條經(jīng)過原點的直線.
當(dāng)k>0時,圖象經(jīng)過一、三象限,從左向右上升,即隨x的增大y也增大;
當(dāng)k<0時,圖象經(jīng)過二、四象限,從左向右下降,即隨x增大y反而減小.
由于正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條直線,我們可以稱它為直線y=kx.
六、指導(dǎo)應(yīng)用,發(fā)展能力
例2 在同一直角坐標(biāo)系中畫出y=x,y=2x,y=3x的函數(shù)圖象,并比較它們的異同點.
相同點:圖象經(jīng)過一、三象限,從左向右上升;
不同點:傾斜度不同, y=x,y=2x,y=3x的函數(shù)圖象離y軸越來越近.
例3 在同一直角坐標(biāo)系中畫出y=-x,y=-2x,y=-3x的函數(shù)圖象,并比較它們的異同點.
相同點:圖象經(jīng)過二、四象限,從左向右下降;
不同點:傾斜度不同, y=-x,y=-2x,y=-3x的函數(shù)圖象離y軸越來越近.
在y=kx中,k的絕對值越大,函數(shù)圖象越靠近y軸.
數(shù)學(xué)八年級上冊教案10
教學(xué)目標(biāo):
。1)通過觀察操作,認(rèn)識軸對稱圖形的特點,掌握軸對稱圖形的概念。
。2)能準(zhǔn)確判斷哪些事物是軸對稱圖形。
。3)能找出并畫出軸對稱圖形的對稱軸。
。4)通過實驗,培養(yǎng)學(xué)生的抽象思維和空間想象能力。
。5)結(jié)合教材和聯(lián)系生活實際培養(yǎng)學(xué)生的學(xué)習(xí)興趣和熱愛生活的情感。
教學(xué)重點:
。1)認(rèn)識軸對稱圖形的特點,建立軸對稱圖形的概念;
。2)準(zhǔn)確判斷生活中哪些事物是軸對稱圖形。
教學(xué)難點:
根據(jù)本班學(xué)生學(xué)習(xí)的實際情況,本節(jié)課教學(xué)的難點是找軸對稱圖形的對稱軸。
教學(xué)過程:
一、認(rèn)識對稱物體
1、出示物體:今天秦老師給大家?guī)砹艘恍┪矬w,這是我們學(xué)校的同學(xué)參加數(shù)學(xué)競賽獲得的獎杯。這時一架轟炸戰(zhàn)斗機。這是海獅頂球。
2、請同學(xué)們仔細(xì)觀察這些物體,想一想它們的外形有什么共同的特點。(可能的回答:對稱)
。ǖ糠謱W(xué)生這時并不真正理解何為對稱)
追問:對稱?你是怎樣理解對稱的呢?
(可能的回答:兩邊是一樣的)
像這樣兩邊形狀、大小都完全相同的物體,我們就說它是對稱的。(板書:對稱)像這樣對稱的物體,在我們的生活中你看到過嗎?誰來說說看?
(可能正確的回答:蝴蝶、蜻蜓……)
(可能錯誤的回答:剪刀)
若有錯誤答案則如此處理。追問:剪刀是不是對稱的?學(xué)生產(chǎn)生分歧,有說是,有說不是。剪刀兩邊不是完全一樣的,所以它不對稱。但是沿著輪廓把它畫在紙上,是一個對稱的。
二、認(rèn)識對稱圖形
1、這些對稱的物體,我們把它畫在紙上,就得到這樣一些平面圖形。(出示圖片)這些圖形還是對稱的嗎?(是對稱的)
同學(xué)們真聰明,一眼就能看出這些圖形都是對稱的。那么像這樣的圖形,我們就把它們叫做——(生齊說:對稱圖形)
(師在“對稱”后接著板書:圖形)
2、是不是所有的圖形都是對稱的?它們又是怎樣對稱的?我們又怎樣證明它們是不是對稱圖形?這就是我們這節(jié)課要研究的問題。為了研究這些問題,老師還帶來了一些平面圖形,你們看——
。◣熢诤诎迳腺N出圖形)
邊貼邊說:汽車圖形、鑰匙圖形、桃子圖形、蝴蝶圖形、青蛙圖形、豎琴圖形、香港區(qū)徽圖形。
這些圖形都是對稱的嗎?(不是)
3、你們能給它們分分類嗎?(能)誰愿意上來分一分?
你準(zhǔn)備怎么分類?(分成兩類:一類是對稱圖形,一類是不對稱圖形)
問全班同學(xué):你們同意嗎?(同意)
你們怎么知道這些圖形就是對稱圖形?有什么辦法來證明嗎?(對折)
好,我們用這個辦法試一下。誰愿意上來折給大家看的?自己上來,選擇一個喜歡的圖形折給大家看。
4、圖形對折后你發(fā)現(xiàn)了什么?誰先說?(可能的回答:對折后兩邊一樣或?qū)φ酆髢蛇呏丿B)
你們所說的兩邊一樣、兩邊重疊,也就是說對折后兩邊重合了。
。◣煱鍟褐睾希ㄈ粲姓f出完全重合則板書:完全重合)
請將對折后的對稱圖形貼到黑板上,謝謝。
師指不對稱圖形。同學(xué)們剛才我們通過把這些對稱圖形對折,發(fā)現(xiàn)對折后兩邊重合了,現(xiàn)在再請幾位同學(xué)上來折一折不對稱圖形,看看這次又有什么發(fā)現(xiàn)?還是自己上來。
折后你發(fā)現(xiàn)了什么?(可能的回答:沒有重合、對折后兩邊不一樣)它們有沒有重合?一點點重合都沒有嗎?
。ㄓ幸稽c重合)
拿一個對稱圖形和同學(xué)折過的不對稱圖形比較。這個圖形對折后重合了,這個也重合了,那這兩種重合有什么不一樣嗎?
(可能的回答:這個全部重合了,這個沒有)
這些對稱的圖形對折后全部重合了,也就是完全重合了!
(師在“重合”前板書:完全)而不對稱圖形只是部分重合。
好,謝謝你們,請將圖形放這(不對稱圖形下黑板)
大家的表現(xiàn)非常出色,獎勵一下我們自己,來拍拍手吧!
“一——二——停!”我們的.兩只手掌現(xiàn)在是——
(生齊說:完全重合)
三、認(rèn)識對稱軸,對稱軸的畫法
同學(xué)們都很聰明,課前你們都準(zhǔn)備了彩紙、剪刀,如果請你用這些材料創(chuàng)作一個對稱圖形,行嗎?
1、請將你創(chuàng)作的對稱圖形,慢慢打開,問:你們發(fā)現(xiàn)了什么?
。ㄖ虚g有一條折痕)
大家把手中的對稱圖形舉起來,看看是不是每個對稱圖形中間——都有一條折痕。這些折痕的左右兩邊——(生齊說:完全重合)。
這條折痕所在的直線,有它獨有的名稱叫做“對稱軸”。
。ㄔ凇皩ΨQ圖形”前板書:軸)
像這樣的圖形,我們就把它們叫做“軸對稱圖形”。
。◣熓种赴鍟,邊說邊把“對折——完全重合——軸對稱圖形”連起來)
現(xiàn)在大家知道了這個圖形是——軸對稱圖形。這個呢?這個呢?他們都是——軸對稱圖形。接下來請你看著自己創(chuàng)作的圖形說說。
誰來說說,怎樣的圖形是軸對稱圖形?
可以上來拿一個軸對稱圖形說。請學(xué)生用自己的語言說。
2、師拿一張軸對稱圖形,隨便折兩下。
這是一個軸對稱圖形嗎?是的。師隨便折兩下。
誰來說說這個軸對稱圖形的對稱軸是那條?
。ㄒ粭l都不是。)為什么?
只有對折后兩邊完全重合的折痕才是對稱軸。
請你來折出它的對稱軸。通常我們用點劃線表示對稱軸。
師示范。請你在所創(chuàng)作的軸對稱圖形上用點劃線表示出對稱軸。
四、平面圖形中的軸對稱圖形,及它們的對稱軸各有幾條。
1、對于軸對稱圖形,其實我們并不陌生,在我們認(rèn)識的一些平面圖形中應(yīng)該就有一些是軸對稱圖形。我們先回憶一下學(xué)習(xí)過的平面圖形有哪些?
。ǹ赡艿幕卮穑赫叫、長方形、平行四邊形、圓形、梯形、三角形等等)(教師板書,適當(dāng)布局)
同學(xué)們說的是否正確呢?用什么辦法來證明?(對折)如果它是軸對稱圖形,那它有幾條對稱軸呢?
好,那我們就拿出課前準(zhǔn)備的平面圖形,用對折的方法來證明,注意如果它有對稱軸請你折出來。
結(jié)論出來了嗎?現(xiàn)在你的判斷和剛才還是一樣的嗎?
3、問:你想?yún)R報什么?學(xué)生匯報。教師機動回答,回答語可有:
這位同學(xué)既能給出判斷結(jié)果,又能說出判斷的理由,非常好。
看來,僅靠經(jīng)驗、觀察得出的結(jié)論有時并不準(zhǔn)確,還需要動手實驗進行驗證。
能抓住軸對稱圖形的特征進行分析,不錯!
也許一般的平行四邊形不是軸對稱圖形,但有些特殊的平行四邊形卻是比如:長方形和正方形。以此類推……
圓有無數(shù)條對稱軸。所有的圓都是軸對稱圖形。
討論平行四邊形、梯形、三角形時,我們既要考慮一般的圖形,又要考慮特殊的圖形。但是關(guān)于圓形,我們卻無需考慮這么多,正如你所說的,所有的圓都是軸對稱圖形,不存在什么特殊的情況?磥,數(shù)學(xué)學(xué)習(xí)中,具體的問題還得具體對待。
(一般三角形、一般梯形、直角梯形、一般平行四邊形不是軸對稱圖形,等腰三角形、等腰梯形、正三角形、長方形、正方形和圓都是軸對稱圖形)等腰梯形(1條),正五邊形(5條),圓(無數(shù)條)
4、用測量的方法找對稱軸。
剛才,大家都用對折的方法找出了他們的對稱軸,但是如果老師請你在黑板面上找出對稱軸呢?
大家都有一張長方形紙,假設(shè)它就是不能對折的黑板面,怎么畫出它的對稱軸?(我們可以用測量的方法,來找出對邊的中點,連結(jié)中點。用同樣的方法,我們可以畫出另一條對稱軸。
現(xiàn)在請同學(xué)們打開書本,畫出書上長方形的對稱軸。(小組內(nèi)交流檢查)
五、練習(xí)
1、學(xué)習(xí)了什么是軸對稱圖形,現(xiàn)在請在你身邊的物體上找出三個軸對稱圖形。(瓷磚面、電視機柜、衣服、國旗?、凳面、桌面)
問:國旗是軸對稱圖形嗎?
產(chǎn)生沖突。說明:不但要觀察外形,還要觀察里面的圖案。
2、判斷國旗是否是軸對稱圖形。
3、找阿拉伯?dāng)?shù)字中的軸對稱圖形
4、領(lǐng)略窗花的美麗,再從中找到創(chuàng)作的靈感,創(chuàng)作軸對稱圖形。教師可出示一些指導(dǎo)性圖片。
選擇一些貼到黑板上,最后出示“美”字。
總結(jié):軸對稱圖形非常美麗,因此被廣泛的運用于服裝、家具、交通、商標(biāo)等方面的設(shè)計中,希望大家能夠運用今天的知識,把我們的教室、把你的家以后把我們的祖國裝扮得更漂亮。
數(shù)學(xué)八年級上冊教案11
教學(xué)目標(biāo)
一、教學(xué)知識點:
1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).
二、能力訓(xùn)練要求:
1.通過具體實例認(rèn)識旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.
2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個圖形對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).
三、情感與價值觀要求
1.經(jīng)歷對生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步的審美能力,增強對圖形欣賞的意識.
2.通過學(xué)習(xí)使學(xué)生能用數(shù)學(xué)的眼光看待生活中的有關(guān)問題,進一步發(fā)展學(xué)生的數(shù)學(xué)觀.
教學(xué)重點:旋轉(zhuǎn)的基本性質(zhì).
教學(xué)難點:探索旋轉(zhuǎn)的基本性質(zhì).
教學(xué)方法:
1、遵循學(xué)生是學(xué)習(xí)的主人的原則,在為學(xué)生創(chuàng)造大量實例的基礎(chǔ)上,引導(dǎo)學(xué)生自主思考、交流、討論、歸納、學(xué)習(xí)。
2、采用多媒體課件輔助教學(xué)。
教學(xué)過程:
一.巧設(shè)情景問題,引入課題
日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動、汽車方向盤的轉(zhuǎn)動、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉(zhuǎn)動呢?
1.在這些轉(zhuǎn)動的現(xiàn)象中,它們都是繞著一個點轉(zhuǎn)動的.
2.每個物體的轉(zhuǎn)動都是向同一個方向轉(zhuǎn)動.
3.鐘表的指針、鐘擺在轉(zhuǎn)動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.
4.汽車的方向盤在轉(zhuǎn)動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學(xué)們觀察得很仔細(xì),我們把這樣的轉(zhuǎn)動叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來探討生活中的旋轉(zhuǎn).
二.講授新課
在數(shù)學(xué)中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個圖形繞著一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn)(circumrotate).這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角.注意:“將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度”意味著圖形上的每個點同時都按相同的方式轉(zhuǎn)動相同的角度.在物體繞著一個定點轉(zhuǎn)動時,它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.
議一議:(課本67頁)答:(1)旋轉(zhuǎn)中心是O點,旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.
(2)四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置.這時點A旋轉(zhuǎn)到點D的位置,點B旋轉(zhuǎn)到點E的位置.
(3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長短、形狀沒有變化,所以O(shè)A與OD是相等的.同樣,線段OB與OE是相等的.
(4)因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過程中,圖形上的每個點同時都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的.
(4)也可以這樣理解:因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.
看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉(zhuǎn)得到的,經(jīng)過旋轉(zhuǎn),點A移動到點D的位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應(yīng)點.從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?
答:因為O是旋轉(zhuǎn)中心,點A與點D是對應(yīng)點,點B與點E是對應(yīng)點,且OA=OD,OB=OE,所以可以知道:對應(yīng)點與旋轉(zhuǎn)中心所連的線段的長度是相等的.
因為點A與點D、點B與點E是對應(yīng)點,且∠AOD=∠BOE,所以由此可以知道:對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角是互相相等的.
由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過旋轉(zhuǎn),圖形上的每一點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度.任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對應(yīng)點到旋轉(zhuǎn)中心的距離相等.
[例1](課本68頁例1)
。蹘熒参觯萁(jīng)演示(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時的'度數(shù)是360°,一周需要60分,因此每分鐘分針?biāo)D(zhuǎn)過的度數(shù)是6°,這樣20分時,分針逆轉(zhuǎn)的角度即可求出.
解:(見課本68頁)
書上68頁做一做
三.課堂練習(xí)
課本P69隨堂練習(xí).
1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.
四.課時小結(jié)
五.課后作業(yè):課本P69習(xí)題3.4 1、2、3.
六.活動與探究
1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過程:讓學(xué)生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉(zhuǎn)規(guī)律.
結(jié)果:旋轉(zhuǎn)現(xiàn)象為:
整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.
整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.
整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉(zhuǎn)得到的?
過程:同樣讓學(xué)生在畫圖過程中體會圖形中每個三角形之間的關(guān)系;或讓學(xué)生仔細(xì)觀察圖形,分析圖形,找出關(guān)系.
結(jié)果:圖中存在這樣的三角形,其中一個是另一個通過旋轉(zhuǎn)得到的.
整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.
整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
板書設(shè)計:略
教學(xué)反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學(xué)直觀生動形象。學(xué)生一般都能在教師的指導(dǎo)下掌握。也在培養(yǎng)學(xué)生的空間想象能力。
數(shù)學(xué)八年級上冊教案12
教學(xué)目標(biāo):
1、理解運用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的綜合運用。
3、進一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問題的能力。
教學(xué)重點:
運用平方差公式分解因式。
教學(xué)難點:
高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運用。
教學(xué)案例:
我們數(shù)學(xué)組的觀課議課主題:
1、關(guān)注學(xué)生的合作交流
2、如何使學(xué)困生能積極參與課堂交流。
在精心備課過程中,我設(shè)計了這樣的自學(xué)提示:
1、整式乘法中的平方差公式是xxx,如何用語言描述?把上述公式反過來就得到xxxxx,如何用語言描述?
2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?
、-x2+y2②-x2-y2③4-9x2
、(x+y)2-(x-y)2⑤a4-b4
3、試總結(jié)運用平方差公式因式分解的條件是什么?
4、仿照例4的`分析及旁白你能把x3y-xy因式分解嗎?
5、試總結(jié)因式分解的步驟是什么?
師巡回指導(dǎo),生自主探究后交流合作。
生交流熱情很高,但把全部問題分析完已用了30分鐘。
生展示自學(xué)成果。
生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)
生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)
師:這兩種方法都可以,但第二種方法提出負(fù)號后,一定要注意括號里的各項要變號。
生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)
生4:不對,應(yīng)分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數(shù)或整式的平方差的形式。
生5:a4-b4可分解為(a2+b2)(a2-b2)
生6:不對,a2-b2還能繼續(xù)分解為a+b)(a-b)
師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數(shù)或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止!
反思:這節(jié)課我備課比較認(rèn)真,自學(xué)提示的設(shè)計也動了一番腦筋,為讓學(xué)生順利得出運用平方差公式因式分解的'條件,我設(shè)計了問題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計了問題4,自認(rèn)為,本節(jié)課一定會上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒有按計劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨立完成,反思這節(jié)課主要有以下幾個問題:
(1)我在備課時,過高估計了學(xué)生的能力,問題2中的③、④、⑤多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時,多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學(xué)生的注意力,導(dǎo)致難點、重點不突出,若能把問題2改為:
下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。
(2)教師備課時,要考慮學(xué)生的知識層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進,切莫過于心急,過分追求課堂容量、習(xí)題類型全等等,例如在問題2的設(shè)計時可寫一些簡單的,像④、⑤可到練習(xí)時再出現(xiàn),發(fā)現(xiàn)問題后再強調(diào)、歸納,效果也可能會更好。
我及時調(diào)整了自學(xué)提示的內(nèi)容,在另一個班也上了這節(jié)課。果然,學(xué)生的討論有了重點,很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非;钴S,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時有點不能應(yīng)對自如。例如:師:下面我們把課后練習(xí)做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試!鄙珠_始緊張地練習(xí)……下課后,無意間發(fā)現(xiàn)竟還有好幾個同學(xué)課后題沒做。原因是預(yù)習(xí)時不會,上課又沒時間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……?磥,以后上課不能單聽學(xué)生的齊答,要發(fā)揮組長的職責(zé),注重過關(guān)落實。給學(xué)生一點機動時間,讓學(xué)習(xí)有困難的學(xué)生有機會釋疑,練習(xí)不在于多,要注意融會貫通,會舉一反三。
確實,“學(xué)海無涯,教海無邊”。我們備課再認(rèn)真,預(yù)設(shè)再周全,面對不同的學(xué)生,不同的學(xué)情,仍然會產(chǎn)生新的問題,“沒有,只有更好!”我會一直探索、努力,不斷完善教學(xué)設(shè)計,更新教育觀念,直到永遠(yuǎn)……
數(shù)學(xué)八年級上冊教案13
教學(xué)目標(biāo)
(一)教學(xué)知識點
1.經(jīng)歷探索積的乘方的運算法則的過程,進一步體會冪的意義。
2.理解積的乘方運算法則,能解決一些實際問題。
(二)能力訓(xùn)練要求
1.在探究積的乘方的運算法則的過程中,發(fā)展推理能力和有條理的表達(dá)能力。
2.學(xué)習(xí)積的乘方的運算法則,提高解決問題的能力。
(三)情感與價值觀要求
在發(fā)展推理能力和有條理的語言、符號表達(dá)能力的同時,進一步體會學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)習(xí)數(shù)學(xué)的信心,感受數(shù)學(xué)的簡潔美。
教學(xué)重點
積的乘方運算法則及其應(yīng)用。
教學(xué)難點
冪的運算法則的靈活運用。
教學(xué)方法
自學(xué)─引導(dǎo)相結(jié)合的方法。
同底數(shù)冪的乘法、冪的乘方、積的乘方成一個體系,研究方法類同,有前兩節(jié)課做基礎(chǔ),本節(jié)課可放手讓學(xué)生自學(xué),教師引導(dǎo)學(xué)生總結(jié),從而讓學(xué)生真正理解冪的`運算方法,能解決一些實際問題。
教具準(zhǔn)備
投影片.
教學(xué)過程
、瘢岢鰡栴},創(chuàng)設(shè)情境
[師]還是就上節(jié)課開課提出的問題:若已知一個正方體的棱長為1.1×103cm,你能計算出它的體積是多少嗎?
[生]它的體積應(yīng)是V=(1.1×103)3cm3。
[師]這個結(jié)果是冪的乘方形式嗎?
[生]不是,底數(shù)是1.1和103的乘積,雖然103是冪,但總體來看,我認(rèn)為應(yīng)是積的乘方才有道理。
[師]你分析得很有道理,積的乘方如何運算呢?能不能找到一個運算法則?有前兩節(jié)課的探究經(jīng)驗,老師想請同學(xué)們自己探索,發(fā)現(xiàn)其中的奧秒。
、颍畬(dǎo)入新課
老師列出自學(xué)提綱,引導(dǎo)學(xué)生自主探究、討論、嘗試、歸納。
出示投影片
1.填空,看看運算過程用到哪些運算律,從運算結(jié)果看能發(fā)現(xiàn)什么規(guī)律?
(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()
。2)(ab)3=______=_______=a()b()
。3)(ab)n=______=______=a()b()(n是正整數(shù))
2.把你發(fā)現(xiàn)的規(guī)律用文字語言表述,再用符號語言表達(dá)。
3.解決前面提到的正方體體積計算問題。
4.積的乘方的運算法則能否進行逆運算呢?請驗證你的想法。
5.完成課本P170例3。
學(xué)生探究的經(jīng)過:
1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意義;第②步是用乘法的交換律和結(jié)合律;第③步是用同底數(shù)冪的乘法法則。同樣的方法可以算出(2)、(3)題。
數(shù)學(xué)八年級上冊教案14
一、教學(xué)目標(biāo)
知識與技能
1、了解立方根的概念,初步學(xué)會用根號表示一個數(shù)的立方根.
2、了解開立方與立方互為逆運算,會用立方運算求某些數(shù)的立方根.
過程與方法
1讓學(xué)生體會一個數(shù)的立方根的惟一性.
2培養(yǎng)學(xué)生用類比的思想求立方根的能力,體會立方與開立方運算的互逆性,滲透數(shù)學(xué)的轉(zhuǎn)化思想。
情感態(tài)度與價值觀
通過立方根符號的引入體會數(shù)學(xué)的簡潔美。
二、重點難點
重點
立方根的概念和求法。
難點
立方根與平方根的區(qū)別,立方根的`求法
三、學(xué)情分析
前面已經(jīng)學(xué)過了平方根的知識,由于平方根與立方根的學(xué)習(xí)有很多相似之處,所以在教學(xué)設(shè)計上,主要還是采取類比的思想,在全面回顧平方根的基礎(chǔ)上,再來引導(dǎo)學(xué)生進行立方根知識的學(xué)習(xí),讓學(xué)生感覺到其實立方根知識并不難,可以與平方根知識對比著學(xué),這樣可以克服學(xué)生學(xué)習(xí)新知識的陌生心理。在學(xué)習(xí)方法上,提倡讓學(xué)生在反思中學(xué)習(xí),在概念的得出,歸納性質(zhì),解題之后都要進行適當(dāng)?shù)姆此,在反思中看待與理解新知識和新問題,會更理性和全面,會有更大的進步。
四、教學(xué)過程設(shè)計
教學(xué)環(huán)節(jié)問題設(shè)計師生活動備注
情境創(chuàng)設(shè)問題:要制作一種容積為27m3的正方體形狀的包裝箱,這種包裝箱的邊長應(yīng)該是多少?
設(shè)這種包裝箱的邊長為xm,則=27這就是求一個數(shù),使它的立方等于27.
因為=27,所以x=3.即這種包裝箱的邊長應(yīng)為3m
歸納:
立方根的概念:
創(chuàng)設(shè)問題情境,引起學(xué)生學(xué)習(xí)的興趣,經(jīng)小組討論后引出概念。
通過具體問題得出立方根的概念
探究一:
根據(jù)立方根的意義填空,看看正數(shù)、0、負(fù)數(shù)的立方根各有什么特點?
因為(),所以0.125的立方根是()
因為(),所以-8的立方根是()
因為(),所以-0.125的立方根是()
因為(),所以0的立方根是()
一個正數(shù)有一個正的立方根
0有一個立方根,是它本身
一個負(fù)數(shù)有一個負(fù)的立方根
任何數(shù)都有唯一的立方根
【總結(jié)歸納】
一個數(shù)的立方根,記作,讀作:“三次根號”,其中叫被開方數(shù),3叫根指數(shù),不能省略,若省略表示平方。.
探究二:
因為所以=
因為,所以=總結(jié):
利用開立方和立方互為逆運算關(guān)系,求一個數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗其正確性,求負(fù)數(shù)的立方根,可以先求出這個負(fù)數(shù)的絕對值的立方根,再取其相反數(shù),即。
數(shù)學(xué)八年級上冊教案15
教學(xué)內(nèi)容
本節(jié)課主要介紹全等三角形的概念和性質(zhì).
教學(xué)目標(biāo)
1.知識與技能
領(lǐng)會全等三角形對應(yīng)邊和對應(yīng)角相等的有關(guān)概念.
2.過程與方法
經(jīng)歷探索全等三角形性質(zhì)的過程,能在全等三角形中正確找出對應(yīng)邊、對應(yīng)角.
3.情感、態(tài)度與價值觀
培養(yǎng)觀察、操作、分析能力,體會全等三角形的應(yīng)用價值.
重、難點與關(guān)鍵
1.重點:會確定全等三角形的對應(yīng)元素.
2.難點:掌握找對應(yīng)邊、對應(yīng)角的方法.
3.關(guān)鍵:找對應(yīng)邊、對應(yīng)角有下面兩種方法:(1)全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個對應(yīng)角所夾的邊是對應(yīng)邊;(2)對應(yīng)邊所對的角是對應(yīng)角,?兩條對應(yīng)邊所夾的角是對應(yīng)角.教具準(zhǔn)備
四張大小一樣的紙片、直尺、剪刀.
教學(xué)方法
采用“直觀──感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實例,加深認(rèn)識.教學(xué)過程
一、動手操作,導(dǎo)入課題
1.先在其中一張紙上畫出任意一個多邊形,再用剪刀剪下,?思考得到的圖形有何特點?
2.重新在一張紙板上畫出任意一個三角形,再用剪刀剪下,?思考得到的圖形有何特點?
【學(xué)生活動】動手操作、用腦思考、與同伴討論,得出結(jié)論.
【教師活動】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個多邊形和三角形.
學(xué)生在操作過程中,教師要讓學(xué)生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個過程要細(xì)心.
【互動交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的`兩個圖形叫做全等形,用“≌”表示.
概念:能夠完全重合的兩個三角形叫做全等三角形.
【教師活動】在紙版上任意剪下一個三角形,要求學(xué)生手拿一個三角形,做如下運動:平移、翻折、旋轉(zhuǎn),觀察其運動前后的三角形會全等嗎?
【學(xué)生活動】動手操作,實踐感知,得出結(jié)論:兩個三角形全等.
【教師活動】要求學(xué)生用字母表示出每個剪下的三角形,同時互相指出每個三角形的頂點、三個角、三條邊、每條邊的邊角、每個角的對邊.
【學(xué)生活動】把兩個三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時能完全重在一起?(2)此時它們的頂點、邊、角有何特點?
【交流討論】通過同桌交流,實驗得出下面結(jié)論:
1.任意放置時,并不一定完全重合,?只有當(dāng)把相同的角旋轉(zhuǎn)到一起時才能完全重合.
2.這時它們的三個頂點、三條邊和三個內(nèi)角分別重合了.
3.完全重合說明三條邊對應(yīng)相等,三個內(nèi)角對應(yīng)相等,?對應(yīng)頂點在相對應(yīng)的位置.
【數(shù)學(xué)八年級上冊教案】相關(guān)文章:
數(shù)學(xué)八年級上冊教案03-02
八年級上冊數(shù)學(xué)教案01-13
八年級數(shù)學(xué)上冊教案02-27
八年級上冊數(shù)學(xué)優(yōu)秀教案01-23
數(shù)學(xué)上冊教案01-15