八年級(jí)數(shù)學(xué)上冊(cè)的教案[共15篇]
作為一位無私奉獻(xiàn)的人民教師,時(shí)常會(huì)需要準(zhǔn)備好教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么教案應(yīng)該怎么寫才合適呢?下面是小編精心整理的八年級(jí)數(shù)學(xué)上冊(cè)的教案,僅供參考,歡迎大家閱讀。
八年級(jí)數(shù)學(xué)上冊(cè)的教案1
學(xué)習(xí)目標(biāo):
1.了解方差的定義和計(jì)算公式。
2.理解方差概念的產(chǎn)生和形成的過程。
3.會(huì)用方差計(jì)算公式來比較兩組數(shù)據(jù)的波動(dòng)大小。
重點(diǎn)、難點(diǎn):
1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
2.難點(diǎn):理解方差公式
一.學(xué)前準(zhǔn)備:
問題農(nóng)科院計(jì)劃為某地選擇合適的甜玉米種子.選擇種子時(shí),甜玉米的產(chǎn)量和產(chǎn)量的穩(wěn)定性是農(nóng)科院所關(guān)心的問題.為了解甲、乙兩種甜玉米種子的相關(guān)情況,農(nóng)科院各用10塊自然條件相同的試驗(yàn)田進(jìn)行試驗(yàn),得到各試驗(yàn)田每公頃的產(chǎn)量(單位:t)如表所示。
甲7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41
乙7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49
根據(jù)這些數(shù)據(jù)估計(jì),農(nóng)科院應(yīng)該選擇哪種甜玉米種子呢?
來衡量這組數(shù)據(jù)的波動(dòng)大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
意義:用來衡量一批數(shù)據(jù)的波動(dòng)大小。
在樣本容量相同的'情況下,方差越大,說明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定。
二、歸納:
(1)研究離散程度可用
(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的波動(dòng)大小
(3)方差主要應(yīng)用在平均數(shù)相等或接近時(shí)
(4)方差大波動(dòng)大,方差小波動(dòng)小,一般選波動(dòng)小的
例題:在一次芭蕾舞比賽中,甲乙兩個(gè)芭蕾舞團(tuán)都表演了舞劇《天鵝湖》,參加表演的女演員的身高(單位:cm)分別是:
甲163 164 164 165 165 166 166 167
乙163 165 165 166 166 167 168 168
哪個(gè)芭蕾舞團(tuán)的女演員的身高比較整齊?
三.自我檢查:
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S,所以確定去參加比賽。
3.甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?
八年級(jí)數(shù)學(xué)上冊(cè)的教案2
【教學(xué)目標(biāo)】
1.了解分式概念.
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學(xué)重難點(diǎn)】
重點(diǎn):理解分式有意義的條件,分式的值為零的條件.
難點(diǎn):能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學(xué)過程】
一、課堂導(dǎo)入
1.讓學(xué)生填寫[思考],學(xué)生自己依次填出:,,,.
2.問題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?
設(shè)江水的流速為x千米/時(shí).
輪船順流航行100千米所用的時(shí)間為小時(shí),逆流航行60千米所用時(shí)間小時(shí),所以=.
3.以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式.分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.
[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的`分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個(gè)條件,分式才有意義.即當(dāng)B≠0時(shí),分式才有意義.
二、例題講解
例1:當(dāng)x為何值時(shí),分式有意義.
【分析】已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解出字母x的取值范圍.
(補(bǔ)充)例2:當(dāng)m為何值時(shí),分式的值為0?
(1);(2);(3).
【分析】分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.
三、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.當(dāng)x取何值時(shí),下列分式有意義?
3.當(dāng)x為何值時(shí),分式的值為0?
四、小結(jié)
談?wù)勀愕氖斋@.
五、布置作業(yè)
課本128~129頁練習(xí).
八年級(jí)數(shù)學(xué)上冊(cè)的教案3
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系.
2.內(nèi)容解析
三角形是一種最基本的幾何圖形,是認(rèn)識(shí)其他圖形的基礎(chǔ),在本章中,學(xué)好了三角形的有關(guān)概念和性質(zhì),為進(jìn)一步學(xué)習(xí)多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關(guān)系,使學(xué)生對(duì)三角形的有關(guān)知識(shí)有更為深刻的理解.
本節(jié)課的教學(xué)重點(diǎn):三角形中的相關(guān)概念和三角形三邊關(guān)系.
本節(jié)課的教學(xué)難點(diǎn):三角形的三邊關(guān)系.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)了解三角形中的相關(guān)概念,學(xué)會(huì)用符號(hào)語言表示三角形中的對(duì)應(yīng)元素.
(2)理解并且靈活應(yīng)用三角形三邊關(guān)系.
2.教學(xué)目標(biāo)解析
(1)結(jié)合具體圖形,識(shí)三角形的概念及其基本元素.
(2)會(huì)用符號(hào)、字母表示三角形中的相關(guān)元素,并會(huì)按邊對(duì)三角形進(jìn)行分類.
(3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會(huì)運(yùn)用這一性質(zhì)來解決問題.
三、教學(xué)問題診斷分析
在探索三角形三邊關(guān)系的過程中,讓學(xué)生經(jīng)歷觀察、探究、推理、交流等活動(dòng)過程,培養(yǎng)學(xué)生的和推理能力和合作學(xué)習(xí)的精神.
四、教學(xué)過程設(shè)計(jì)
1.創(chuàng)設(shè)情境,提出問題
問題回憶生活中的三角形實(shí)例,結(jié)合你以前對(duì)三角形的了解,請(qǐng)你給三角形下一個(gè)定義.
師生活動(dòng):先讓學(xué)生分組討論,然后各小組派代表發(fā)言,針對(duì)學(xué)生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學(xué)生對(duì)三角形概念的理解.
【設(shè)計(jì)意圖】三角形概念的獲得,要讓學(xué)生經(jīng)歷其描述的過程,借此培養(yǎng)學(xué)生的語言表述能力,加深學(xué)生對(duì)三角形概念的理解.
2.抽象概括,形成概念
動(dòng)態(tài)演示“首尾順次相接”這個(gè)的動(dòng)畫,歸納出三角形的定義.
師生活動(dòng):
三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由抽象到具體的過程,培養(yǎng)學(xué)生的語言表述能力.
補(bǔ)充說明:要求學(xué)生學(xué)會(huì)三角形、三角形的頂點(diǎn)、邊、角的概念以及幾何表達(dá)方法.
師生活動(dòng):結(jié)合具體圖形,教師引導(dǎo)學(xué)生分析,讓學(xué)生學(xué)會(huì)由文字語言向幾何語言的過渡.
【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對(duì)三角形中相關(guān)元素的認(rèn)知,并進(jìn)一步熟悉幾何語言在學(xué)習(xí)中的應(yīng)用.
3.概念辨析,應(yīng)用鞏固
如圖,不重復(fù),且不遺漏地識(shí)別所有三角形,并用符號(hào)語言表示出來.
1.以AB為一邊的'三角形有哪些?
2.以∠D為一個(gè)內(nèi)角的三角形有哪些?
3.以E為一個(gè)頂點(diǎn)的三角形有哪些?
4.說出ΔBCD的三個(gè)角.
師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,加深學(xué)生對(duì)三角形中相關(guān)元素概念的理解.
4.拓廣延伸,探究分類
我們知道,按照三個(gè)內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對(duì)三角形進(jìn)行分類,又應(yīng)該如何分呢?小組之間同學(xué)進(jìn)行交流并說說你們的想法.
師生活動(dòng):通過討論,學(xué)生類比按角的分類方法按邊對(duì)三角形進(jìn)行分類,接著引出等腰三角形及等邊三角形的概念,引導(dǎo)學(xué)生了解等腰三角形與等邊三角形的聯(lián)系,強(qiáng)化學(xué)生對(duì)三角形按邊分類的理解.
八年級(jí)數(shù)學(xué)上冊(cè)的教案4
第11章平面直角坐標(biāo)系
11。1平面上點(diǎn)的坐標(biāo)
第1課時(shí)平面上點(diǎn)的坐標(biāo)(一)
教學(xué)目標(biāo)
【知識(shí)與技能】
1。知道有序?qū)崝?shù)對(duì)的概念,認(rèn)識(shí)平面直角坐標(biāo)系的相關(guān)知識(shí),如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點(diǎn)等。
2。理解坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的一一對(duì)應(yīng)關(guān)系,能寫出給定的平面直角坐標(biāo)系中某一點(diǎn)的坐標(biāo)。已知點(diǎn)的坐標(biāo),能在平面直角坐標(biāo)系中描出點(diǎn)。
3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來描述點(diǎn)的位置。
【過程與方法】
1。結(jié)合現(xiàn)實(shí)生活中表示物體位置的例子,理解有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系的作用。
2。學(xué)會(huì)用有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系中的點(diǎn)來描述物體的位置。
【情感、態(tài)度與價(jià)值觀】
通過引入有序?qū)崝?shù)對(duì)、平面直角坐標(biāo)系讓學(xué)生體會(huì)到現(xiàn)實(shí)生活中的問題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價(jià)值。
重點(diǎn)難點(diǎn)
【重點(diǎn)】
認(rèn)識(shí)平面直角坐標(biāo)系,寫出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點(diǎn)。
【難點(diǎn)】
理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。
教學(xué)過程
一、創(chuàng)設(shè)情境、導(dǎo)入新知
師:如果讓你描述自己在班級(jí)中的位置,你會(huì)怎么說?
生甲:我在第3排第5個(gè)座位。
生乙:我在第4行第7列。
師:很好!我們買的電影票上寫著幾排幾號(hào),是對(duì)應(yīng)某一個(gè)座位,也就是這個(gè)座位可以用排號(hào)和列號(hào)兩個(gè)數(shù)字確定下來。
二、合作探究,獲取新知
師:在以上幾個(gè)問題中,我們根據(jù)一個(gè)物體在兩個(gè)互相垂直的方向上的數(shù)量來表示這個(gè)物體
的位置,這兩個(gè)數(shù)量我們可以用一個(gè)實(shí)數(shù)對(duì)來表示,但是,如果(5,3)表示5排3號(hào)的話,那么(3,5)表示什么呢?
生:3排5號(hào)。
師:對(duì),它們對(duì)應(yīng)的不是同一個(gè)位置,所以要求表示物體位置的這個(gè)實(shí)數(shù)對(duì)是有序的。誰來說說我們應(yīng)該怎樣表示一個(gè)物體的位置呢?
生:用一個(gè)有序的實(shí)數(shù)對(duì)來表示。
師:對(duì)。我們學(xué)過實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,有序?qū)崝?shù)對(duì)是不是也可以和一個(gè)點(diǎn)對(duì)應(yīng)起來呢?
生:可以。
教師在黑板上作圖:
我們可以在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為
正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點(diǎn)為原點(diǎn)。這樣就構(gòu)成了平面直角坐標(biāo)系,這個(gè)平面叫做坐標(biāo)平面。
師:有了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一個(gè)有序?qū)崝?shù)對(duì)來表示了,F(xiàn)在請(qǐng)大家自己動(dòng)手畫一個(gè)平面直角坐標(biāo)系。
學(xué)生操作,教師巡視。教師指正學(xué)生易犯的錯(cuò)誤。
教師邊操作邊講解:
如圖,由點(diǎn)P分別向x軸和y軸作垂線,垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說P點(diǎn)的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫在前,縱坐標(biāo)寫在后,(3,5)就是點(diǎn)P的坐標(biāo)。在x軸上的點(diǎn),過這點(diǎn)向y軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點(diǎn),過這點(diǎn)向x軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都是0,即原點(diǎn)的坐標(biāo)是(0,0)。
教師多媒體出示:
師:如圖,請(qǐng)同學(xué)們寫出A、B、C、D這四點(diǎn)的坐標(biāo)。
生甲:A點(diǎn)的坐標(biāo)是(—5,4)。
生乙:B點(diǎn)的坐標(biāo)是(—3,—2)。
生丙:C點(diǎn)的坐標(biāo)是(4,0)。
生丁:D點(diǎn)的坐標(biāo)是(0,—6)。
師:很好!我們已經(jīng)知道了怎樣寫出點(diǎn)的坐標(biāo),如果已知一點(diǎn)的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個(gè)點(diǎn)呢?
教師邊操作邊講解:
在x軸上找出橫坐標(biāo)是3的點(diǎn),過這一點(diǎn)向x軸作垂線,橫坐標(biāo)是3的點(diǎn)都在這條直線上;在y軸上找出縱坐標(biāo)是—2的點(diǎn),過這一點(diǎn)向y軸作垂線,縱坐標(biāo)是—2的點(diǎn)都在這條直線上;這兩條直線交于一點(diǎn),這一點(diǎn)既滿足橫坐標(biāo)為3,又滿足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點(diǎn)。下面請(qǐng)同學(xué)們?cè)诜礁窦堉薪⒁粋(gè)平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個(gè)點(diǎn)。
學(xué)生動(dòng)手作圖,教師巡視指導(dǎo)。
三、深入探究,層層推進(jìn)
師:兩個(gè)坐標(biāo)軸把坐標(biāo)平面劃分為四個(gè)區(qū)域,從x軸正半軸開始,按逆時(shí)針方向,把這四個(gè)區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個(gè)象限。在同一象限內(nèi)的點(diǎn),它們的橫坐標(biāo)的符號(hào)一樣嗎?縱坐標(biāo)的符號(hào)一樣嗎?
生:都一樣。
師:對(duì),由作垂線求坐標(biāo)的過程,我們知道第一象限內(nèi)的點(diǎn)的橫坐標(biāo)的符號(hào)為+,縱坐標(biāo)的符號(hào)也為+。你能說出其他象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)嗎?
生:能。第二象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,+),第三象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,—),第四象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(+,—)。
師:很好!我們知道了一點(diǎn)所在的象限,就能知道它的坐標(biāo)的符號(hào)。同樣的,我們由點(diǎn)的`坐標(biāo)也能知道它所在的象限。一點(diǎn)的坐標(biāo)的符號(hào)為(—,+),你能判斷這點(diǎn)是在哪個(gè)象限嗎?
生:能,在第二象限。
四、練習(xí)新知
師:現(xiàn)在我給出幾個(gè)點(diǎn),你們判斷一下它們分別在哪個(gè)象限。
教師寫出四個(gè)點(diǎn)的坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。
生甲:A點(diǎn)在第三象限。
生乙:B點(diǎn)在第四象限。
生丙:C點(diǎn)不屬于任何一個(gè)象限,它在y軸上。
生。篋點(diǎn)不屬于任何一個(gè)象限,它在x軸上。
師:很好!現(xiàn)在請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,在上面描出這些點(diǎn)。
學(xué)生作圖,教師巡視,并予以指導(dǎo)。
五、課堂小結(jié)
師:本節(jié)課你學(xué)到了哪些新的知識(shí)?
生:認(rèn)識(shí)了平面直角坐標(biāo)系,會(huì)寫出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能描點(diǎn),知道了四個(gè)象限以及四個(gè)象限內(nèi)點(diǎn)的符號(hào)特征。
教師補(bǔ)充完善。
教學(xué)反思
物體位置的說法和表述物體的位置等問題,學(xué)生在實(shí)際生活中經(jīng)常遇到,但可能沒有想到這些問題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個(gè)平面直角坐標(biāo)系來表示物體的位置,讓學(xué)生參與到探索獲取新知的活動(dòng)中,主動(dòng)學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的實(shí)例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實(shí)用性,增強(qiáng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
第2課時(shí)平面上點(diǎn)的坐標(biāo)(二)
教學(xué)目標(biāo)
【知識(shí)與技能】
進(jìn)一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認(rèn)識(shí)坐標(biāo)系中的圖形。
【過程與方法】
通過探索平面上的點(diǎn)連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。
【情感、態(tài)度與價(jià)值觀】
培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,體驗(yàn)通過二維坐標(biāo)來描述圖形頂點(diǎn),從而描述圖形的方法。
重點(diǎn)難點(diǎn)
【重點(diǎn)】
理解平面上的點(diǎn)連接成的圖形,計(jì)算圍成的圖形的面積。
【難點(diǎn)】
不規(guī)則圖形面積的求法。
教學(xué)過程
一、創(chuàng)設(shè)情境,導(dǎo)入新知
師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點(diǎn)的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個(gè)點(diǎn)表示出來。下面請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個(gè)點(diǎn)。
學(xué)生作圖。
教師邊操作邊講解:
二、合作探究,獲取新知
師:現(xiàn)在我們把這三個(gè)點(diǎn)用線段連接起來,看一下得到的是什么圖形?
生甲:三角形。
生乙:直角三角形。
師:你能計(jì)算出它的面積嗎?
生:能。
教師挑一名學(xué)生:你是怎樣算的呢?
生:AB的長(zhǎng)是5—2=3,BC的長(zhǎng)是1—(—3)=4,所以三角形ABC的面積是×3×4=6。
師:很好!
教師邊操作邊講解:
大家再描出四個(gè)點(diǎn):A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么
圖形?
學(xué)生完成操作后回答:平行四邊形。
師:你能計(jì)算它的面積嗎?
生:能。
教師挑一名學(xué)生:你是怎么計(jì)算的呢?
生:以BC為底,A到BC的垂線段AE為高,BC的長(zhǎng)為4,AE的長(zhǎng)為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點(diǎn),我們將它們順次連接形成圖形,下面我們來看這樣一個(gè)連接成的圖形:
教師多媒體出示下圖:
八年級(jí)數(shù)學(xué)上冊(cè)的教案5
一、內(nèi)容和內(nèi)容解析
1、內(nèi)容
正比例函數(shù)的概念。
2、內(nèi)容解析
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對(duì)正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗(yàn)。
對(duì)正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對(duì)函數(shù)概念的理解,即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),即根據(jù)實(shí)際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對(duì)對(duì)應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。
本節(jié)課主要是通過對(duì)生活中大量實(shí)際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的.概念對(duì)具體函數(shù)進(jìn)行辨析,對(duì)實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念。
二、目標(biāo)和目標(biāo)解析
1、目標(biāo)
。1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;
。2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會(huì)函數(shù)建模思想。
2、目標(biāo)解析
達(dá)成目標(biāo)(1)的標(biāo)志是:通過對(duì)實(shí)際問題的分析,知道自變量和對(duì)應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。
達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問題抽象為函數(shù)模型,體會(huì)函數(shù)建模思想。
三、教學(xué)問題診斷分析
正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對(duì)函數(shù)基本概念理解未必深刻,在對(duì)實(shí)際問題進(jìn)行分析過程中,需進(jìn)一步強(qiáng)化對(duì)函數(shù)概念的理解:即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng);對(duì)正比例函數(shù)概念的理解關(guān)鍵是對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),要通過大量實(shí)例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對(duì)對(duì)應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度。
因此本節(jié)課的教學(xué)難點(diǎn)是:對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程。
八年級(jí)數(shù)學(xué)上冊(cè)的教案6
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
變量與常量的概念。
2.內(nèi)容解析
本課是函數(shù)的起始課,函數(shù)是刻畫運(yùn)動(dòng)變化現(xiàn)象的重要數(shù)學(xué)模型,要從數(shù)學(xué)的角度研究變化現(xiàn)象,把握變化規(guī)律,首先要關(guān)注變化過程中量的變化,這就是變量.有了變量的概念,便為研究成函數(shù)關(guān)系的兩變量的“運(yùn)動(dòng)與對(duì)應(yīng)”關(guān)系打下基礎(chǔ)。
本課從四個(gè)簡(jiǎn)單的實(shí)際問題入手,通過分析問題中數(shù)值的變與不變,引出變量與常量的概念,而且問題中變量的單值對(duì)應(yīng)關(guān)系也為學(xué)習(xí)函數(shù)的定義作了鋪墊。
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)是:能找出一個(gè)變化過程中的變量與常量。
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)了解常量、變量的意義;
(2)充分體會(huì)運(yùn)動(dòng)變化過程中量的變化。
2.目標(biāo)解析
(1)知道在一個(gè)變化過程中,數(shù)值發(fā)生變化的量為變量,數(shù)值始終不變的量為常量;
(2)體會(huì)在一個(gè)變化過程中,一個(gè)量隨著另一個(gè)量的變化而變化,初步體會(huì)兩個(gè)變量之間的單值對(duì)應(yīng)關(guān)系。
三、教學(xué)問題診斷分析
變量是學(xué)生第一次接觸,對(duì)一個(gè)運(yùn)動(dòng)變化過程中的兩個(gè)變量的關(guān)系,學(xué)生往往只認(rèn)為是一種確定的數(shù)量關(guān)系,類似于二元一次方程,沒有用運(yùn)動(dòng)與變化的觀點(diǎn)去體會(huì)兩個(gè)變量之間相互依賴的變化。
基于以上分析,確定本節(jié)課的教學(xué)難點(diǎn)為:體會(huì)運(yùn)動(dòng)變化過程中量的變化。
四、教學(xué)過程設(shè)計(jì)
1.創(chuàng)設(shè)情境,觀察思考
引言
我們生活在一個(gè)變化的世界,行星在宇宙中的位置隨時(shí)間而變化,氣溫隨海拔而變化,樹高隨樹齡而變化…所謂“萬物皆變”.唯一不變的就是變化本身.我們發(fā)現(xiàn),在各種各樣的變化過程中往往蘊(yùn)含著量的變化,研究這些量之間的'依賴關(guān)系是我們把握變化規(guī)律的關(guān)鍵。
【設(shè)計(jì)意圖】通過引言教學(xué),提出本節(jié)課需要研究的問題,合理地引起學(xué)生注意。
2.合作探究,形成概念
問題1有如下幾個(gè)變化過程,請(qǐng)找出各變化過程中的量,并分類:
(1)汽車以60 km/h的速度勻速行駛.行駛路程為s km/h,行駛時(shí)間為t h.填寫下表,s的值隨t的值的變化而變化嗎?
---------------------------------------------------------
t/h 1 2 3 4 5
---------------------------------------------------------
s/km
---------------------------------------------------------
(2)電影票的售價(jià)為10元/張.第一場(chǎng)售出150張票,第二場(chǎng)售出205張票,第三場(chǎng)售出310張票,三場(chǎng)電影的票房收入各多少元?
(3)用10m長(zhǎng)的繩子圍一個(gè)矩形.當(dāng)矩形的一邊長(zhǎng)分別為3m,3.5m,4m,4.5m時(shí),它的鄰邊分別為多少?
(4)美麗的水中漣漪圖中,圓形水波紋慢慢地?cái)U(kuò)大.在這一過程中,當(dāng)圓的半徑r分別為10cm,20cm,30cm時(shí),圓的面積S分別為多少?
師生活動(dòng)1教師與學(xué)生一起通過計(jì)算填表,并分析問題(1)中出現(xiàn)的三個(gè)量,發(fā)現(xiàn)其中有些量的數(shù)值是變化的,如時(shí)間t,路程s;有些量的數(shù)值是始終不變的,如速度60km/h.
【設(shè)計(jì)意圖】在常見的“行程問題”中,引導(dǎo)學(xué)生從“變與不變”的角度觀察速度、時(shí)間、路程三個(gè)量,可以較為自然地引導(dǎo)學(xué)生對(duì)三個(gè)量進(jìn)行分類.
師生活動(dòng)2學(xué)生繼續(xù)分析問題(2)(3)(4)中的量并分類,領(lǐng)會(huì)“變量”、“常量”的含義.發(fā)現(xiàn)在同一個(gè)變化過程中,始終保持不變的量為常量,而數(shù)值發(fā)生變化的量為變量.
【設(shè)計(jì)意圖】有前述的示范引導(dǎo),讓學(xué)生自主探究“銷售問題”、“幾何問題”中的常量與變量,通過探索簡(jiǎn)單實(shí)例中的的數(shù)量關(guān)系和變化規(guī)律,深刻體會(huì)變量與常量的含義.
問題2在上述問題1的四個(gè)變化過程中,請(qǐng)思考:
(1)汽車以60 km/h的速度勻速行駛.行駛路程為s km/h,行駛時(shí)間為t h. s的值隨t的值的變化而變化嗎?
(2)電影票的售價(jià)為10元/張.設(shè)一場(chǎng)電影售出x張票,票房收入為y元,y的值隨x的值的變化而變化嗎?
(3)美麗的水中漣漪圖中,圓形水波紋慢慢地?cái)U(kuò)大.在這一過程中,設(shè)圓的半徑為r,圓的面積S,S的值隨r的值的變化而變化嗎?
(4)用10m長(zhǎng)的繩子圍一個(gè)矩形.設(shè)矩形的一邊長(zhǎng)為x,鄰邊長(zhǎng)為y,y的值隨x的值的變化而變化嗎?
師生活動(dòng)學(xué)生思考并回答.
【設(shè)計(jì)意圖】從實(shí)際問題中抽象出變量,進(jìn)一步體會(huì)常量與變量之間、變量與變量之間的關(guān)系,初步體會(huì)同一個(gè)變化過程中兩個(gè)變量之間的依賴關(guān)系和對(duì)應(yīng)關(guān)系.
3.初步辨析,強(qiáng)化認(rèn)識(shí)
問題3指出下列問題中的變量和常量:
(1)某市的自來水價(jià)為4元/t.現(xiàn)要抽取若干戶居民調(diào)查水費(fèi)支出情況,記某戶月用水量為x t,月應(yīng)交水費(fèi)為y元.
(2)某地手機(jī)通話費(fèi)為0.2元/min.李明在手機(jī)話費(fèi)卡中存入30?,記此后他的手機(jī)通話時(shí)間為t min,話費(fèi)卡中的余額為w元.
師生活動(dòng)學(xué)生通過獨(dú)立思考和合作交流,解決問題.
【設(shè)計(jì)意圖】教師引導(dǎo)學(xué)生在2個(gè)常見的簡(jiǎn)單的實(shí)際問題中,通過合理、正確的
19.1.1變量與函數(shù):同步練習(xí)
1.(6分)以21m/s的速度向上拋一個(gè)小球,小球的高度h(m)與小球運(yùn)動(dòng)的時(shí)間t(s)之間的關(guān)系是h=21t﹣4.9t2.下列說法正確的是( )
A.4.9是常量,21,t,h是變量B.21,4.9是常量,t,h是變量
C.t,h是常量,21,4.9是變量D.t,h是常量,4.9是變量
【答案】B
【解析】解:A、21是常量,故A錯(cuò)誤;
B、21,4.9是常量,t,h是變量,故B是正確;
C、D、t、h是變量,21,4.9是常量,故C、D錯(cuò)誤;
故選:B
《19.1函數(shù)》同步練習(xí)題
15.李老師騎自行車到離家10千米的學(xué)校上班,6:00出發(fā),最初以某一速度勻速行進(jìn),走了一半在6:20由于自行車發(fā)生故障,停下修車耽誤了8分鐘,為了能按時(shí)(6:45)到校,李老師加快了速度,仍保持勻速行進(jìn),結(jié)果準(zhǔn)時(shí)到校.請(qǐng)你畫出他行進(jìn)的路程y(千米)與行進(jìn)時(shí)間t(分鐘)的函數(shù)圖象的示意圖。
八年級(jí)數(shù)學(xué)上冊(cè)的教案7
《正方形》教學(xué)設(shè)計(jì)
教學(xué)內(nèi)容分析:
、艑W(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。
、魄懊鎸W(xué)習(xí)了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對(duì)正方形的研究。
、菍(duì)本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類研究的思想,并且建立新舊知識(shí)的聯(lián)系,類比的基礎(chǔ)上進(jìn)行歸納,梳理知識(shí),進(jìn)一步發(fā)展學(xué)生的推理能力。
學(xué)生分析:
、艑W(xué)生在小學(xué)初步認(rèn)識(shí)了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗(yàn)與知識(shí)基礎(chǔ)。
、茖W(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對(duì)于證明,學(xué)生的思維能力還不成熟,有待于提高。
教學(xué)目標(biāo):
、胖R(shí)與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會(huì)利用性質(zhì)與判定進(jìn)行簡(jiǎn)單的說理。
、七^程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運(yùn)用提高學(xué)生的推理能力。
、乔楦袘B(tài)度與價(jià)值觀:在學(xué)習(xí)中體會(huì)正方形的完美性,通過活動(dòng)獲得成功的喜悅與自信。
重點(diǎn):掌握正方形的性質(zhì)與判定,并進(jìn)行簡(jiǎn)單的推理。
難點(diǎn):探索正方形的判定,發(fā)展學(xué)生的推理能
教學(xué)方法:類比與探究
教具準(zhǔn)備:可以活動(dòng)的四邊形模型。
一、教學(xué)分析
(一)教學(xué)內(nèi)容分析
1.教材:義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》九年級(jí)上冊(cè)(人民教育出版社)
2.本課教學(xué)內(nèi)容的地位、作用,知識(shí)的前后聯(lián)系
《中心對(duì)稱圖形》是新人教版九年級(jí)數(shù)學(xué)上冊(cè)第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學(xué)習(xí)了“軸對(duì)稱和軸對(duì)稱圖形”、“旋轉(zhuǎn)和中心對(duì)稱”后的一種對(duì)稱圖形,因此涉及歸納、類比等思想方法,對(duì)激發(fā)學(xué)生探索精神和創(chuàng)新意識(shí)等方面都有重要意義。
3.本課教學(xué)內(nèi)容的特點(diǎn),重點(diǎn)分析體現(xiàn)新課程理念的特點(diǎn)
本節(jié)課主要介紹中心對(duì)稱圖形的概念、中心對(duì)稱圖形的識(shí)別、中心對(duì)稱圖形與軸對(duì)稱圖形與中心對(duì)稱的比較、中心對(duì)稱圖形的性質(zhì)。為使學(xué)生感受、理解知識(shí)的產(chǎn)生和發(fā)展過程,培養(yǎng)學(xué)生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉(zhuǎn)對(duì)稱圖形引出中心對(duì)稱圖形的概念;(2)引導(dǎo)學(xué)生觀察、猜想、實(shí)驗(yàn)、歸納、類比等方法探究中心對(duì)稱圖形的性質(zhì),(3)通過多媒體演示使學(xué)生對(duì)中心對(duì)稱圖形的性質(zhì)有直觀的表象。我認(rèn)為這環(huán)環(huán)相扣、層層深入、循序漸進(jìn)的活動(dòng)過程,符合新課程標(biāo)準(zhǔn)理念和學(xué)生建構(gòu)知識(shí)的規(guī)律,有利于激發(fā)學(xué)生的學(xué)習(xí)情趣。
(二)教學(xué)對(duì)象分析
1.學(xué)生所在地區(qū)、學(xué)校及班級(jí)的特色
我授課的班級(jí)是西安市閻良區(qū)振興中學(xué)九年級(jí)一班,作為九年級(jí)的學(xué)生,在圖形的對(duì)稱方面已經(jīng)積累一些經(jīng)驗(yàn),已經(jīng)具有一定的觀察、猜想、實(shí)驗(yàn)、歸納、類比等研究圖形對(duì)稱變換的.能力;班級(jí)學(xué)生具有個(gè)性活潑,思維活躍,對(duì)各種事物充滿好奇,學(xué)習(xí)情緒易于調(diào)動(dòng),學(xué)習(xí)積極性高的特點(diǎn),但學(xué)生的抽象思維能力個(gè)體差異較大,并且班級(jí)中已出現(xiàn)分化現(xiàn)象。
2.學(xué)生的年齡特點(diǎn)和認(rèn)知特點(diǎn)
班級(jí)學(xué)生的年齡大多在15歲到17歲間。他們已具備了一定的獨(dú)立分析、解決問題的能力,表現(xiàn)欲望較為強(qiáng)烈,喜好發(fā)表個(gè)人見解并且具有一定的合作交流、共同探討的意識(shí)與經(jīng)驗(yàn),因此在課程內(nèi)容的安排中,適當(dāng)?shù)貏?chuàng)設(shè)一些具有一定思維深度的問題,加強(qiáng)學(xué)生在學(xué)習(xí)過程中自主探索與合作交流的緊密結(jié)合,促使學(xué)生在探究的過程中,更多地獲得成功的體驗(yàn),感受學(xué)習(xí)思考的樂趣。
教學(xué)過程:
一:復(fù)習(xí)鞏固,建立聯(lián)系。
【教師活動(dòng)】
問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?
②()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。
【學(xué)生活動(dòng)】
學(xué)生回憶,并舉手回答,對(duì)于填空題,讓更多的學(xué)生參與,說出更多的答案。
【教師活動(dòng)】
評(píng)析學(xué)生的結(jié)果,給予表揚(yáng)。
總結(jié)性質(zhì)從邊角對(duì)角線考慮,在填空時(shí)也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。
二:動(dòng)手操作,探索發(fā)現(xiàn)。
活動(dòng)一:拿出一張矩形紙片,拉起一角,使其寬AB落在長(zhǎng)AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?
【學(xué)生活動(dòng)】
學(xué)生拿出自備矩形紙片,動(dòng)手操作,不難發(fā)現(xiàn)它是正方形。
設(shè)置問題:①什么是正方形?
觀察發(fā)現(xiàn),從活動(dòng)中體會(huì)。
【教師活動(dòng)】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。
【學(xué)生活動(dòng)】認(rèn)真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。
設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學(xué)生活動(dòng)】
小組討論,分組回答。
【教師活動(dòng)】
總結(jié)板書:㈠(一組鄰邊相等)的矩形是正方形,(一個(gè)角是直角)的菱形是正方形。
設(shè)置問題③正方形有那些性質(zhì)?
【學(xué)生活動(dòng)】
小組討論,舉手搶答。
【教師活動(dòng)】
表揚(yáng)學(xué)生發(fā)言,板書學(xué)生發(fā)現(xiàn),㈡正方形每一條對(duì)角線平分一組對(duì)角
活動(dòng)二:拿出活動(dòng)一得到的正方形折一折,正方形是軸對(duì)稱圖形嗎?有幾條對(duì)稱軸?
學(xué)生活動(dòng)
折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對(duì)稱圖形。
教師活動(dòng)
演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號(hào)內(nèi)容,出示一下問題:你還可以怎樣填空?
()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。
學(xué)生活動(dòng)
小組充分交流,表達(dá)不同的意見。
教師活動(dòng)
評(píng)析活動(dòng),總結(jié)發(fā)現(xiàn):
一組鄰邊相等的矩形是正方形,對(duì)角線互相平分的矩形是正方形;
有一個(gè)角是直角的菱形是正方形,對(duì)角線相等的菱形是正方形,;
有一組鄰邊相等且有一個(gè)角是直角的平行四邊形是正方形,對(duì)角線相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對(duì)角線相等且互相垂直平分的四邊形是正方形。
以上是正方形的判定方法。
正方形是一個(gè)多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?
學(xué)生交流,感受正方形
三,應(yīng)用體驗(yàn),推理證明。
出示例一:正方形ABCD的兩條對(duì)角線AC,BD交與O,AB長(zhǎng)4cm,求AC,AO長(zhǎng),及的度數(shù)。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個(gè)角是直角)
BC=AB=4cm(正方形的四條邊相等)
∴=45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC===4cm
∵AO=AC(正方形的對(duì)角線互相平分)
∴AO=×4=2cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學(xué)生活動(dòng)
獨(dú)立思考,寫出推理過程,再進(jìn)行小組討論,并且各小組指派代表寫在黑板上,共同交流。
教師活動(dòng)
總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評(píng)析解題步驟,表揚(yáng)突出學(xué)生。
出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學(xué)生活動(dòng)
小組交流,分析題意,整理思路,指名口答。
教師活動(dòng)
說明思路,從已知出發(fā)或者從已有的判定加以選擇。
四,歸納新知,梳理知識(shí)。
這一節(jié)課你有什么收獲?
學(xué)生舉手談?wù)撟约旱氖斋@。
請(qǐng)把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關(guān)系。
發(fā)表評(píng)論
教學(xué)目標(biāo):
情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂趣。
能力目標(biāo):能利用等腰梯形的性質(zhì)解簡(jiǎn)單的幾何計(jì)算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。
認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰梯形性質(zhì)的探索;
難點(diǎn):梯形中輔助線的添加。
教學(xué)課件:PowerPoint演示文稿
教學(xué)方法:?jiǎn)l(fā)法、
學(xué)習(xí)方法:討論法、合作法、練習(xí)法
教學(xué)過程:
。ㄒ唬⿲(dǎo)入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習(xí):下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對(duì)邊平行另以組對(duì)邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對(duì)角線。(投影)
6、特殊梯形的分類:(投影)
(二)等腰梯形性質(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個(gè)內(nèi)角相等。
【操練】
(1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長(zhǎng)線于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對(duì)角線,圖中有哪幾對(duì)全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對(duì)角線相等。
【探究性質(zhì)三】
問題一:延長(zhǎng)等腰梯形的兩腰,哪些三角形是軸對(duì)稱圖形?為什么?對(duì)稱軸呢?(學(xué)生操作、作答)
問題二:等腰梯是否軸對(duì)稱圖形?為什么?對(duì)稱軸是什么?(重點(diǎn)討論)
等腰梯形性質(zhì):同以底上的兩個(gè)內(nèi)角相等,對(duì)角線相等
。ㄈ┵|(zhì)疑反思、小結(jié)
讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;
學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對(duì)角線、對(duì)稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
八年級(jí)數(shù)學(xué)上冊(cè)的教案8
教學(xué)目標(biāo)
1.知識(shí)與技能
領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.
2.過程與方法
經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.
2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的
教學(xué)方法
采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.
教學(xué)過程
一、回顧交流,導(dǎo)入新知
【問題牽引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知識(shí)遷移】
2.計(jì)算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教師活動(dòng)】引導(dǎo)學(xué)生完成下面兩道題,并運(yùn)用數(shù)學(xué)“互逆”的'思想,尋找因式分解的規(guī)律.
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【學(xué)生活動(dòng)】從逆向思維的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值.
【思路點(diǎn)撥】根據(jù)完全平方式的定義,解此題時(shí)應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.
三、隨堂練習(xí),鞏固深化
課本P170練習(xí)第1、2題.
【探研時(shí)空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、課堂總結(jié),發(fā)展?jié)撃?/p>
由于多項(xiàng)式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項(xiàng)式因式分解的公式,主要的有以下三個(gè):
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在運(yùn)用公式因式分解時(shí),要注意:
(1)每個(gè)公式的形式與特點(diǎn),通過對(duì)多項(xiàng)式的項(xiàng)數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個(gè)公式分解,通常是,當(dāng)多項(xiàng)式是二項(xiàng)式時(shí),考慮用平方差公式分解;當(dāng)多項(xiàng)式是三項(xiàng)時(shí),應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項(xiàng)式不一定能直接用公式,需要進(jìn)行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;(3)當(dāng)多項(xiàng)式各項(xiàng)有公因式時(shí),應(yīng)該首先考慮提公因式,然后再運(yùn)用公式分解.
五、布置作業(yè),專題突破
八年級(jí)數(shù)學(xué)上冊(cè)的教案9
教學(xué)目標(biāo)
一、教學(xué)知識(shí)點(diǎn):
1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).
二、能力訓(xùn)練要求:
1.通過具體實(shí)例認(rèn)識(shí)旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.
2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個(gè)圖形對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).
三、情感與價(jià)值觀要求
1.經(jīng)歷對(duì)生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進(jìn)行觀察、分析、欣賞以及動(dòng)手操作、畫圖等過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí).
2.通過學(xué)習(xí)使學(xué)生能用數(shù)學(xué)的眼光看待生活中的有關(guān)問題,進(jìn)一步發(fā)展學(xué)生的數(shù)學(xué)觀.
教學(xué)重點(diǎn):旋轉(zhuǎn)的基本性質(zhì).
教學(xué)難點(diǎn):探索旋轉(zhuǎn)的基本性質(zhì).
教學(xué)方法:
1、遵循學(xué)生是學(xué)習(xí)的主人的原則,在為學(xué)生創(chuàng)造大量實(shí)例的基礎(chǔ)上,引導(dǎo)學(xué)生自主思考、交流、討論、歸納、學(xué)習(xí)。
2、采用多媒體課件輔助教學(xué)。
教學(xué)過程:
一.巧設(shè)情景問題,引入課題
日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動(dòng)、汽車方向盤的轉(zhuǎn)動(dòng)、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動(dòng)現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動(dòng)過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉(zhuǎn)動(dòng)呢?
1.在這些轉(zhuǎn)動(dòng)的現(xiàn)象中,它們都是繞著一個(gè)點(diǎn)轉(zhuǎn)動(dòng)的.
2.每個(gè)物體的轉(zhuǎn)動(dòng)都是向同一個(gè)方向轉(zhuǎn)動(dòng).
3.鐘表的指針、鐘擺在轉(zhuǎn)動(dòng)過程中,它的形狀、大小沒有變化,只是它的位置有所改變.
4.汽車的方向盤在轉(zhuǎn)動(dòng)過程中,同樣它的形狀、大小沒有改變,方向盤上的每點(diǎn)的位置所變化.同學(xué)們觀察得很仔細(xì),我們把這樣的轉(zhuǎn)動(dòng)叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來探討生活中的旋轉(zhuǎn).
二.講授新課
在數(shù)學(xué)中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個(gè)圖形繞著一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn)(circumrotate).這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角.注意:“將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度”意味著圖形上的每個(gè)點(diǎn)同時(shí)都按相同的方式轉(zhuǎn)動(dòng)相同的角度.在物體繞著一個(gè)定點(diǎn)轉(zhuǎn)動(dòng)時(shí),它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.
議一議:(課本67頁)答:(1)旋轉(zhuǎn)中心是O點(diǎn),旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.
(2)四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置.這時(shí)點(diǎn)A旋轉(zhuǎn)到點(diǎn)D的位置,點(diǎn)B旋轉(zhuǎn)到點(diǎn)E的位置.
(3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長(zhǎng)短、形狀沒有變化,所以O(shè)A與OD是相等的.同樣,線段OB與OE是相等的.
(4)因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過程中,圖形上的每個(gè)點(diǎn)同時(shí)都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的.
(4)也可以這樣理解:因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因?yàn)椤螧OD是公共角,所以,∠AOD與∠BOE是相等的.
看上圖,四邊形DOEF是由四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)得到的,經(jīng)過旋轉(zhuǎn),點(diǎn)A移動(dòng)到點(diǎn)D的位置,點(diǎn)B移動(dòng)到點(diǎn)E的位置,點(diǎn)C移動(dòng)到點(diǎn)F的位置,則點(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E、點(diǎn)C與點(diǎn)F就是對(duì)應(yīng)點(diǎn).從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的`性質(zhì)呢?
答:因?yàn)镺是旋轉(zhuǎn)中心,點(diǎn)A與點(diǎn)D是對(duì)應(yīng)點(diǎn),點(diǎn)B與點(diǎn)E是對(duì)應(yīng)點(diǎn),且OA=OD,OB=OE,所以可以知道:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的長(zhǎng)度是相等的.
因?yàn)辄c(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E是對(duì)應(yīng)點(diǎn),且∠AOD=∠BOE,所以由此可以知道:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角是互相相等的.
由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過旋轉(zhuǎn),圖形上的每一點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度.任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.
。劾1](課本68頁例1)
。蹘熒参觯萁(jīng)演示(鐘表實(shí)物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時(shí)的度數(shù)是360°,一周需要60分,因此每分鐘分針?biāo)D(zhuǎn)過的度數(shù)是6°,這樣20分時(shí),分針逆轉(zhuǎn)的角度即可求出.
解:(見課本68頁)
書上68頁做一做
三.課堂練習(xí)
課本P69隨堂練習(xí).
1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.
四.課時(shí)小結(jié)
五.課后作業(yè):課本P69習(xí)題3.4 1、2、3.
六.活動(dòng)與探究
1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過程:讓學(xué)生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉(zhuǎn)規(guī)律.
結(jié)果:旋轉(zhuǎn)現(xiàn)象為:
整個(gè)圖形可以看做是圖形的八分之一(一組大小不等的三個(gè)“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.
整個(gè)圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.
整個(gè)圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
2.圖中是否存在這樣的兩個(gè)三角形,其中一個(gè)是另一個(gè)通過旋轉(zhuǎn)得到的?
過程:同樣讓學(xué)生在畫圖過程中體會(huì)圖形中每個(gè)三角形之間的關(guān)系;或讓學(xué)生仔細(xì)觀察圖形,分析圖形,找出關(guān)系.
結(jié)果:圖中存在這樣的三角形,其中一個(gè)是另一個(gè)通過旋轉(zhuǎn)得到的.
整個(gè)圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.
整個(gè)圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
板書設(shè)計(jì):略
教學(xué)反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學(xué)直觀生動(dòng)形象。學(xué)生一般都能在教師的指導(dǎo)下掌握。也在培養(yǎng)學(xué)生的空間想象能力。
八年級(jí)數(shù)學(xué)上冊(cè)的教案10
教學(xué)目標(biāo)
1.知識(shí)與技能
了解因式分解的意義,以及它與整式乘法的關(guān)系.
2.過程與方法
經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.
3.情感、態(tài)度與價(jià)值觀
在探索因式分解的方法的活動(dòng)中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識(shí),體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在含義與價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):了解因式分解的意義,感受其作用.
2.難點(diǎn):整式乘法與因式分解之間的關(guān)系.
3.關(guān)鍵:通過分解因數(shù)引入到分解因式,并進(jìn)行類比,加深理解.
教學(xué)方法
采用“激趣導(dǎo)學(xué)”的教學(xué)方法.
教學(xué)過程
一、創(chuàng)設(shè)情境,激趣導(dǎo)入
【問題牽引】
請(qǐng)同學(xué)們探究下面的2個(gè)問題:
問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ǎ?/p>
問題2:當(dāng)a=102,b=98時(shí),求a2-b2的值.
二、豐富聯(lián)想,展示思維
探索:你會(huì)做下面的填空嗎?
1.ma+mb+mc=( )( );
2.x2-4=( )( );
3.x2-2xy+y2=( )2.
【師生共識(shí)】把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式.
三、小組活動(dòng),共同探究
【問題牽引】
。1)下列各式從左到右的變形是否為因式分解:
①(x+1)(x-1)=x2-1;
、赼2-1+b2=(a+1)(a-1)+b2;
、7x-7=7(x-1).
。2)在下列括號(hào)里,填上適當(dāng)?shù)捻?xiàng),使等式成立.
①9x2(______)+y2=(3x+y)(_______);
、趚2-4xy+(_______)=(x-_______)2.
四、隨堂練習(xí),鞏固深化
課本練習(xí).
【探研時(shí)空】計(jì)算:993-99能被100整除嗎?
五、課堂總結(jié),發(fā)展?jié)撃?/strong>
由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:
1.什么叫因式分解?
2.因式分解與整式運(yùn)算有何區(qū)別?
六、布置作業(yè),專題突破
選用補(bǔ)充作業(yè).
板書設(shè)計(jì)
15.4.1 因式分解
1、因式分解 例:
練習(xí):
15.4.2 提公因式法
教學(xué)目標(biāo)
1.知識(shí)與技能
能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.
2.過程與方法
使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.
2.難點(diǎn):正確地確定多項(xiàng)式的最大公因式.
3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.
教學(xué)方法
采用“啟發(fā)式”教學(xué)方法.
教學(xué)過程
一、回顧交流,導(dǎo)入新知
【復(fù)習(xí)交流】
下列從左到右的變形是否是因式分解,為什么?
。1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);
。3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;
。5)x2-2xy+y2=(x-y)2.
問題:
1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?
2.多項(xiàng)式4x2-x和xy2-yz-y呢?
請(qǐng)將上述多項(xiàng)式分別寫成兩個(gè)因式的乘積的形式,并說明理由.
【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.
二、小組合作,探究方法
【教師提問】 多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?
【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的'最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.
三、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路點(diǎn)撥】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)23a2(y-x)+4b2(y-x)2]
=-(y-x)2 [3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)23a2(x-y)-4b2(x-y)2
=(x-y)2 [3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用簡(jiǎn)便的方法計(jì)算:0.84×12+12×0.6-0.44×12.
【教師活動(dòng)】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡(jiǎn)便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教師活動(dòng)】在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習(xí),鞏固深化
課本P167練習(xí)第1、2、3題.
【探研時(shí)空】
利用提公因式法計(jì)算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、課堂總結(jié),發(fā)展?jié)撃?/strong>
1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時(shí)應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.
2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.
六、布置作業(yè),專題突破
課本P170習(xí)題15.4第1、4(1)、6題.
板書設(shè)計(jì)
15.4.2 提公因式法
1、提公因式法 例:
練習(xí):
15.4.3 公式法(一)
教學(xué)目標(biāo)
1.知識(shí)與技能
會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.
2.過程與方法
經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問題中的應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):利用平方差公式分解因式.
2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.
3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.
教學(xué)方法
采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進(jìn)自己的思維.
教學(xué)過程
一、觀察探討,體驗(yàn)新知
【問題牽引】
請(qǐng)同學(xué)們計(jì)算下列各式.
。1)(a+5)(a-5); (2)(4m+3n)(4m-3n).
【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
1.分解因式:a2-25; 2.分解因式16m2-9n.
【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:
。1)a2-25=a2-52=(a+5)(a-5).
。2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動(dòng)】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把下列各式分解因式:(投影顯示或板書)
。1)x2-9y2; (2)16x4-y4;
。3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;
。5)m2(16x-y)+n2(y-16x).
【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.
【學(xué)生活動(dòng)】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);
(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);
(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
三、隨堂練習(xí),鞏固深化
課本P168練習(xí)第1、2題.
【探研時(shí)空】
1.求證:當(dāng)n是正整數(shù)時(shí),n3-n的值一定是6的倍數(shù).
2.試證兩個(gè)連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.
四、課堂總結(jié),發(fā)展?jié)撃?/strong>
運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通?紤]應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡(jiǎn),二是分解因式時(shí),每個(gè)因式都要分解徹底.
五、布置作業(yè),專題突破
課本P171習(xí)題15.4第2、4(2)、11題.
板書設(shè)計(jì)
15.4.3 公式法(一)
1、平方差公式: 例:
a2-b2=(a+b)(a-b) 練習(xí):
15.4.3 公式法(二)
教學(xué)目標(biāo)
1.知識(shí)與技能
領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.
2.過程與方法
經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.
2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的.
教學(xué)方法
采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.
教學(xué)過程
一、回顧交流,導(dǎo)入新知
【問題牽引】
1.分解因式:
。1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;
。3) x2-0.01y2.
八年級(jí)數(shù)學(xué)上冊(cè)的教案11
第二環(huán)節(jié):探索發(fā)現(xiàn)勾股定理
1、探究活動(dòng)一
內(nèi)容:投影顯示如下地板磚示意圖,引導(dǎo)學(xué)生從面積角度觀察圖形:
問:你能發(fā)現(xiàn)各圖中三個(gè)正方形的面積之間有何關(guān)系嗎?
學(xué)生通過觀察,歸納發(fā)現(xiàn):
結(jié)論1以等腰直角三角形兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積。
意圖:從觀察實(shí)際生活中常見的地板磚入手,讓學(xué)生感受到數(shù)學(xué)就在我們身邊。通過對(duì)特殊情形的探究得到結(jié)論1,為探究活動(dòng)二作鋪墊。
效果:1.探究活動(dòng)一讓學(xué)生獨(dú)立觀察,自主探究,培養(yǎng)獨(dú)立思考的習(xí)慣和能力;
2.通過探索發(fā)現(xiàn),讓學(xué)生得到成功體驗(yàn),激發(fā)進(jìn)一步探究的熱情和愿望。
2、探究活動(dòng)二
內(nèi)容:由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?
。1)觀察下面兩幅圖:
。2)填表:
A的面積
(單位面積)B的面積
。▎挝幻娣e)C的面積
。▎挝幻娣e)
左圖
右圖
。3)你是怎樣得到正方形C的面積的?與同伴交流(學(xué)生可能會(huì)做出多種方法,教師應(yīng)給予充分肯定)。
學(xué)生的方法可能有:
方法一:
如圖1,將正方形C分割為四個(gè)全等的直角三角形和一個(gè)小正方形。
方法二:
如圖2,在正方形C外補(bǔ)四個(gè)全等的直角三角形,形成大正方形,用大正方形的.面積減去四個(gè)直角三角形的面積。
方法三:
如圖3,正方形C中除去中間5個(gè)小正方形外,將周圍部分適當(dāng)拼接可成為正方形,如圖3中兩塊紅色(或兩塊綠色)部分可拼成一個(gè)小正方形,按此拼法。
。4)分析填表的數(shù)據(jù),你發(fā)現(xiàn)了什么?
學(xué)生通過分析數(shù)據(jù),歸納出:
結(jié)論2以直角三角形兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積。
意圖:探究活動(dòng)二意在讓學(xué)生通過觀察、計(jì)算、探討、歸納進(jìn)一步發(fā)現(xiàn)一般直角三角形的性質(zhì)。由于正方形C的面積計(jì)算是一個(gè)難點(diǎn),為此設(shè)計(jì)了一個(gè)交流環(huán)節(jié)。
效果:學(xué)生通過充分討論探究,在突破正方形C的面積計(jì)算這一難點(diǎn)后得出結(jié)論2.
3、議一議
內(nèi)容:(1)你能用直角三角形的邊長(zhǎng),來表示上圖中正方形的面積嗎?
。2)你能發(fā)現(xiàn)直角三角形三邊長(zhǎng)度之間存在什么關(guān)系嗎?
。3)分別以5厘米、12厘米為直角邊作出一個(gè)直角三角形,并測(cè)量斜邊的長(zhǎng)度。2中發(fā)現(xiàn)的規(guī)律對(duì)這個(gè)三角形仍然成立嗎?
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。如果用,分別表示直角三角形的兩直角邊和斜邊,那么。
數(shù)學(xué)小史:勾股定理是我國最早發(fā)現(xiàn)的,中國古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名(在西方文獻(xiàn)中又稱為畢達(dá)哥拉斯定理)。
意圖:議一議意在讓學(xué)生在結(jié)論2的基礎(chǔ)上,進(jìn)一步發(fā)現(xiàn)直角三角形三邊關(guān)系,得到勾股定理。
效果:1.讓學(xué)生歸納表述結(jié)論,可培養(yǎng)學(xué)生的抽象概括能力及語言表達(dá)能力;
2.通過作圖培養(yǎng)學(xué)生的動(dòng)手實(shí)踐能力。
八年級(jí)數(shù)學(xué)上冊(cè)的教案12
一、教學(xué)目標(biāo)
知識(shí)與技能
1、了解立方根的概念,初步學(xué)會(huì)用根號(hào)表示一個(gè)數(shù)的立方根.
2、了解開立方與立方互為逆運(yùn)算,會(huì)用立方運(yùn)算求某些數(shù)的立方根.
過程與方法
1讓學(xué)生體會(huì)一個(gè)數(shù)的立方根的惟一性.
2培養(yǎng)學(xué)生用類比的思想求立方根的能力,體會(huì)立方與開立方運(yùn)算的互逆性,滲透數(shù)學(xué)的轉(zhuǎn)化思想。
情感態(tài)度與價(jià)值觀
通過立方根符號(hào)的引入體會(huì)數(shù)學(xué)的簡(jiǎn)潔美。
二、重點(diǎn)難點(diǎn)
重點(diǎn)
立方根的概念和求法。
難點(diǎn)
立方根與平方根的區(qū)別,立方根的求法
三、學(xué)情分析
前面已經(jīng)學(xué)過了平方根的知識(shí),由于平方根與立方根的學(xué)習(xí)有很多相似之處,所以在教學(xué)設(shè)計(jì)上,主要還是采取類比的思想,在全面回顧平方根的基礎(chǔ)上,再來引導(dǎo)學(xué)生進(jìn)行立方根知識(shí)的學(xué)習(xí),讓學(xué)生感覺到其實(shí)立方根知識(shí)并不難,可以與平方根知識(shí)對(duì)比著學(xué),這樣可以克服學(xué)生學(xué)習(xí)新知識(shí)的陌生心理。在學(xué)習(xí)方法上,提倡讓學(xué)生在反思中學(xué)習(xí),在概念的得出,歸納性質(zhì),解題之后都要進(jìn)行適當(dāng)?shù)姆此,在反思中看待與理解新知識(shí)和新問題,會(huì)更理性和全面,會(huì)有更大的進(jìn)步。
四、教學(xué)過程設(shè)計(jì)
教學(xué)環(huán)節(jié)問題設(shè)計(jì)師生活動(dòng)備注
情境創(chuàng)設(shè)問題:要制作一種容積為27m3的正方體形狀的包裝箱,這種包裝箱的邊長(zhǎng)應(yīng)該是多少?
設(shè)這種包裝箱的邊長(zhǎng)為xm,則=27這就是求一個(gè)數(shù),使它的立方等于27.
因?yàn)?27,所以x=3.即這種包裝箱的邊長(zhǎng)應(yīng)為3m
歸納:
立方根的概念:
創(chuàng)設(shè)問題情境,引起學(xué)生學(xué)習(xí)的興趣,經(jīng)小組討論后引出概念。
通過具體問題得出立方根的概念
探究一:
根據(jù)立方根的意義填空,看看正數(shù)、0、負(fù)數(shù)的立方根各有什么特點(diǎn)?
因?yàn)椋ǎ?.125的立方根是()
因?yàn)椋ǎ,所?8的立方根是()
因?yàn)椋ǎ?0.125的'立方根是()
因?yàn)椋ǎ?的立方根是()
一個(gè)正數(shù)有一個(gè)正的立方根
0有一個(gè)立方根,是它本身
一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根
任何數(shù)都有唯一的立方根
【總結(jié)歸納】
一個(gè)數(shù)的立方根,記作,讀作:“三次根號(hào)”,其中叫被開方數(shù),3叫根指數(shù),不能省略,若省略表示平方。.
探究二:
因?yàn)樗?
因?yàn),所?總結(jié):
利用開立方和立方互為逆運(yùn)算關(guān)系,求一個(gè)數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗(yàn)其正確性,求負(fù)數(shù)的立方根,可以先求出這個(gè)負(fù)數(shù)的絕對(duì)值的立方根,再取其相反數(shù),即。
八年級(jí)數(shù)學(xué)上冊(cè)的教案13
教學(xué)設(shè)計(jì)
1、知識(shí)技能:
(1)會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算。
(2)使學(xué)生能利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算。
2、數(shù)學(xué)思考:在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上進(jìn)行總結(jié)對(duì)比,得出除法的運(yùn)算法則。
3、 解決問題:引導(dǎo)學(xué)生從特殊到一般總結(jié)歸納的方法以及類比的方法,解決數(shù)學(xué)問題。
4、情感態(tài)度:通過本節(jié)課的學(xué)習(xí)使學(xué)生認(rèn)識(shí)到事物之間是相互聯(lián)系的,相互作用的
同步練習(xí)含答案解析
【考點(diǎn)】最簡(jiǎn)二次根式。
【分析】判定一個(gè)二次根式是不是最簡(jiǎn)二次根式的`方法,就是逐個(gè)檢查定義中的兩個(gè)條件(①被開方數(shù)不含分母;②被開方數(shù)不含能開得盡方的因數(shù)或因式)是否同時(shí)滿足,同時(shí)滿足的就是最簡(jiǎn)二次根式,否則就不是。
【解答】解:A、被開方數(shù)里含有能開得盡方的因數(shù)8,故本選項(xiàng)錯(cuò)誤;
B、符合最簡(jiǎn)二次根式的條件;故本選項(xiàng)正確;
B、,被開方數(shù)里含有能開得盡方的因式x2;故本選項(xiàng)錯(cuò)誤;
C、被開方數(shù)里含有分母;故本選項(xiàng)錯(cuò)誤。
D、被開方數(shù)里含有能開得盡方的因式a2;故本選項(xiàng)錯(cuò)誤;
故選;B。
【點(diǎn)評(píng)】本題主要考查了最簡(jiǎn)二次根式的定義,最簡(jiǎn)二次根式必須滿足兩個(gè)條件:
(1)被開方數(shù)不含分母;
(2)被開方數(shù)不含能開得盡方的因數(shù)或因式。
課時(shí)練習(xí)含答案
解答:選項(xiàng)A是二次根式乘法的運(yùn)算,選項(xiàng)C不符合二次根式的運(yùn)算條件,選項(xiàng)D中被開方數(shù)不能為負(fù),故A、C、D都是錯(cuò)誤的,唯有B符合二次根式除法運(yùn)算法則,故選B。
分析:正確運(yùn)用二次根式除法運(yùn)算法則進(jìn)行計(jì)算,并能辨析運(yùn)算的正誤,是本節(jié)的教學(xué)難點(diǎn),學(xué)生可以通過比較分析或正確計(jì)算加以判斷。
八年級(jí)數(shù)學(xué)上冊(cè)的教案14
教學(xué)目標(biāo)
1.等腰三角形的概念。
2.等腰三角形的性質(zhì)。
3.等腰三角形的概念及性質(zhì)的應(yīng)用。
教學(xué)重點(diǎn):
等腰三角形的概念及性質(zhì)。 2.等腰三角形性質(zhì)的應(yīng)用。
教學(xué)難點(diǎn):
等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用。
教學(xué)過程
Ⅰ.提出問題,創(chuàng)設(shè)情境
在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能夠通過軸對(duì)稱變換來設(shè)計(jì)一些美麗的圖案。這節(jié)課我們就是從軸對(duì)稱的角度來認(rèn)識(shí)一些我們熟悉的幾何圖形。來研究:
、偃切问禽S對(duì)稱圖形嗎?
、谑裁礃拥娜切问禽S對(duì)稱圖形?
有的三角形是軸對(duì)稱圖形,有的`三角形不是。
問題:那什么樣的三角形是軸對(duì)稱圖形?
滿足軸對(duì)稱的條件的三角形就是軸對(duì)稱圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形。
我們這節(jié)課就來認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角形。
、.導(dǎo)入新課:要求學(xué)生通過自己的思考來做一個(gè)等腰三角形。
作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形。
等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形。相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角。同學(xué)們?cè)谧约鹤鞒龅牡妊切沃,注明它的腰、底邊、頂角和底角?/p>
思考:
1.等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸。
2.等腰三角形的兩底角有什么關(guān)系?
3.頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?
4.底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢?
結(jié)論:等腰三角形是軸對(duì)稱圖形。它的對(duì)稱軸是頂角的平分線所在的直線。因?yàn)榈妊切蔚膬裳嗟龋园堰@兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所在的直線。
要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱軸,并看它的兩個(gè)底角有什么關(guān)系。
沿等腰三角形的頂角的平分線對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高。
由此可以得到等腰三角形的性質(zhì):
1.等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成“等邊對(duì)等角”).
2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).
由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對(duì)稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來證明這些性質(zhì)。同學(xué)們現(xiàn)在就動(dòng)手來寫出這些證明過程).
如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因?yàn)?/p>
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因?yàn)?/p>
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.
[例1]如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,
求:△ABC各角的度數(shù)。
分析:根據(jù)等邊對(duì)等角的性質(zhì),我們可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形內(nèi)角和為180°,就可求出△ABC的三個(gè)內(nèi)角。
把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡(jiǎn)捷。
解:因?yàn)锳B=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等邊對(duì)等角).
設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,
從而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[師]下面我們通過練習(xí)來鞏固這節(jié)課所學(xué)的知識(shí)。
Ⅲ.隨堂練習(xí):1.課本P51練習(xí)1、2、3. 2.閱讀課本P49~P51,然后小結(jié)。
、.課時(shí)小結(jié)
這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用。等腰三角形是軸對(duì)稱圖形,它的兩個(gè)底角相等(等邊對(duì)等角),等腰三角形的對(duì)稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高。
我們通過這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們。
、.作業(yè):課本P56習(xí)題12.3第1、2、3、4題。
板書設(shè)計(jì)
12.3.1.1等腰三角形
一、設(shè)計(jì)方案作出一個(gè)等腰三角形
二、等腰三角形性質(zhì):1.等邊對(duì)等角2.三線合一
八年級(jí)數(shù)學(xué)上冊(cè)的教案15
單元(章)主題第三章 直棱柱任課教師與班級(jí)
本課(節(jié))課題3.1 認(rèn)識(shí)直棱柱第 1 課時(shí) / 共 課時(shí)
教學(xué)目標(biāo)(含重點(diǎn)、難點(diǎn))及
設(shè)置依據(jù)教學(xué)目標(biāo)
1、了解多面體、直棱柱的有關(guān)概念.
2、會(huì)認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.
3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長(zhǎng)方形(含正方形)等特征.
教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):直棱柱的有關(guān)概念.
教學(xué)難點(diǎn):本節(jié)的例題描述一個(gè)物體的形狀,把它看成怎樣的兩個(gè)幾何體的組合,都需要一定的空間想象能力和表達(dá)能力.
教學(xué)準(zhǔn)備每個(gè)學(xué)生準(zhǔn)備一個(gè)幾何體,(分好學(xué)習(xí)小組)教師準(zhǔn)備各種直棱柱和長(zhǎng)方體、立方體模型
教 學(xué) 過 程
內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡(jiǎn)明設(shè)計(jì)意圖二度備課(即時(shí)反思與糾正)
一、創(chuàng)設(shè)情景,引入新課
師:在現(xiàn)實(shí)生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒有這樣類似的立體圖形呢?
析:學(xué)生很容易回答出更多的答案。
師:(繼續(xù)補(bǔ)充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的`古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
二、合作交流,探求新知
1.多面體、棱、頂點(diǎn)概念:
師:(出示長(zhǎng)方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個(gè)平面圍成的?都有什么相同特點(diǎn)?
析:一個(gè)同學(xué)回答,然后小結(jié)概念:由若干個(gè)平面圍成的幾何體,叫做多面體。多面體上相鄰兩個(gè)面之間的交線叫做多面體的棱,幾個(gè)面的公共頂點(diǎn)叫做多面體的頂點(diǎn)
2.合作交流
師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。
學(xué)生活動(dòng):(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描
述其特征。)
師:同學(xué)們?cè)儆懻撘幌拢芊癜炎约旱恼Z言轉(zhuǎn)化為數(shù)學(xué)語言。
學(xué)生活動(dòng):分小組討論。
說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動(dòng)探究中發(fā)現(xiàn)知識(shí),充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。
師:請(qǐng)大家找出與長(zhǎng)方體,立方體類似的物體或模型。
析:舉出實(shí)例。(找出區(qū)別)
師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長(zhǎng)方形含正方形。
長(zhǎng)方體和正方體都是直四棱柱。
3.反饋鞏固
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的相鄰兩條側(cè)棱互相平行且相等。
4.學(xué)以致用
出示例題。(先請(qǐng)學(xué)生單獨(dú)考慮,再作講解)
析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)
最后完成例題中的“想一想”
5.鞏固練習(xí)(學(xué)生練習(xí))
完成“課內(nèi)練習(xí)”
三、小結(jié)回顧,反思提高
師:我們這節(jié)課的重點(diǎn)是什么?哪些地方比較難學(xué)呢?
合作交流后得到:重點(diǎn)直棱柱的有關(guān)概念。
直棱柱有以下特征:
有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長(zhǎng)方形含正方形。
例題中的把首飾盒看成是由兩個(gè)直三棱柱、直四棱柱的組合,或著是兩個(gè)直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點(diǎn)比較難。
板書設(shè)計(jì)
作業(yè)布置或設(shè)計(jì)作業(yè)本及課時(shí)特訓(xùn)
【八年級(jí)數(shù)學(xué)上冊(cè)的教案】相關(guān)文章:
數(shù)學(xué)八年級(jí)上冊(cè)教案03-02
初中數(shù)學(xué)八年級(jí)上冊(cè)教案02-06
八年級(jí)上冊(cè)數(shù)學(xué)函數(shù)教案03-09
八年級(jí)數(shù)學(xué)上冊(cè)教案02-27
數(shù)學(xué)八年級(jí)上冊(cè)教案(15篇)03-02
八年級(jí)數(shù)學(xué)上冊(cè)的教案07-09
八年級(jí)上冊(cè)數(shù)學(xué)優(yōu)秀教案01-23
數(shù)學(xué)八年級(jí)上冊(cè)教案15篇03-02