- 相關(guān)推薦
反比例函數(shù)及其圖象
教學(xué)設(shè)計(jì)示例1
反比例函數(shù)及其圖象
教學(xué)目標(biāo) :
1、理解反比例函數(shù),并能從實(shí)際問題中抽象出反比例關(guān)系的函數(shù)解析式;
2、會(huì)畫出反比例函數(shù)的圖象,并結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;
4、體會(huì)數(shù)學(xué)從實(shí)踐中來又到實(shí)際中去的研究、應(yīng)用過程;
5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題的能力.
教學(xué)重點(diǎn):
結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
教學(xué)難點(diǎn) :描點(diǎn)畫出反比例函數(shù)的圖象
教學(xué)用具:直尺
教學(xué)方法:小組合作、探究式
教學(xué)過程 :
1、從實(shí)際引出反比例函數(shù)的概念
我們?cè)谛W(xué)學(xué)過反比例關(guān)系.例如:當(dāng)路程S一定時(shí),時(shí)間t與速度v成反比例
即vt=S(S是常數(shù));
當(dāng)矩形面積S一定時(shí),長(zhǎng)a與寬b成反比例,即ab=S(S是常數(shù))
從函數(shù)的觀點(diǎn)看,在運(yùn)動(dòng)變化的過程中,有兩個(gè)變量可以分別看成自變量與函數(shù),寫成:
(S是常數(shù))
(S是常數(shù))
一般地,函數(shù) (k是常數(shù), )叫做反比例函數(shù).
如上例,當(dāng)路程S是常數(shù)時(shí),時(shí)間t就是v的反比例函數(shù).當(dāng)矩形面積S是常數(shù)時(shí),長(zhǎng)a是寬b的反比例函數(shù).
在現(xiàn)實(shí)生活中,也有許多反比例關(guān)系的例子.可以組織學(xué)生進(jìn)行討論.下面的例子僅供
2、列表、描點(diǎn)畫出反比例函數(shù)的圖象
例1、畫出反比例函數(shù) 與 的圖象
解:列表
x
-6
-5
-4
-3
1
2
3
4
5
6
-1
-1.2
-1.5
-2
6
3
2
1.5
1.2
1
1
1.2
1.5
2
-6
-3
-2
-1.5
-1.2
1
說明:由于學(xué)生第一次接觸反比例函數(shù),無法推測(cè)出它的大致圖象.取點(diǎn)的時(shí)候最好多取幾個(gè),正負(fù)可以對(duì)稱著取分別畫點(diǎn)描圖
一般地反比例函數(shù) (k是常數(shù), )的圖象由兩條曲線組成,叫做雙曲線.
3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)
前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí).
顯示這兩個(gè)函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證.(下列答案僅供參考)
(1) 的圖象在第一、三象限.可以擴(kuò)展到k >0時(shí)的情形,即k>0時(shí),雙曲線兩支各在第一和第三象限.從解析式中,也可以得出這個(gè)結(jié)論:xy=k,即x與y同號(hào),因此,圖象在第一、三象限.
的討論與此類似.
抓住機(jī)會(huì),說明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過程.
(2)函數(shù) 的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減。
從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢(shì).從列表中也可以看出這樣的變化趨勢(shì).有理數(shù)除法說明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越;若除數(shù)小于零,同樣是除數(shù)越大,商越小.由此可歸納出,當(dāng)k>0時(shí),函數(shù) 的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小.
同樣可以推出 的圖象的性質(zhì).
(3)函數(shù) 的圖象不經(jīng)過原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出, .如果x取值越來越大時(shí),y的值越來越小,趨近于零;如果x取負(fù)值且越來越小時(shí),y的值也越來越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子.同理,抽象出 圖象的性質(zhì).
函數(shù) 的圖象性質(zhì)的討論與次類似.
4、小結(jié):
本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開了充分的討論,對(duì)函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識(shí).數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問題,并能運(yùn)用已有的數(shù)學(xué)知識(shí),給以一定的解釋.即數(shù)學(xué)是世界的一個(gè)部分,同時(shí)又隱藏在世界中.
5、布置作業(yè) 習(xí)題13.8 1-4
教學(xué)設(shè)計(jì)示例2
反比例函數(shù)及其圖像
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1.使學(xué)生了解反比例函數(shù)的概念;
2.使學(xué)生能夠根據(jù)問題中的條件確定反比例函數(shù)的解析式;
3.使學(xué)生理解反比例函數(shù)的性質(zhì),會(huì)畫出它們的圖像,以及根據(jù)圖像指出函數(shù)值隨自變量的增加或減小而變化的情況;
4.會(huì)用待定系數(shù)法確定反比例函數(shù)的解析式.
(二)能力訓(xùn)練點(diǎn)
1.培養(yǎng)學(xué)生的作圖、觀察、分析、總結(jié)的能力;
2.向?qū)W生滲透數(shù)形結(jié)合的教學(xué)思想方法.
(三)德育滲透點(diǎn)
1.向?qū)W生滲透數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的觀點(diǎn);
2.使學(xué)生體會(huì)事物是有規(guī)律地變化著的觀點(diǎn).
(四)美育滲透點(diǎn)
通過反比例函數(shù)圖像的研究,滲透反映其性質(zhì)的圖像的直觀形象美,激發(fā)學(xué)生的興趣,也培養(yǎng)學(xué)生積極探求知識(shí)的能力.
二、學(xué)法引導(dǎo)
教師采用類比法、觀察法、練習(xí)法
學(xué)生學(xué)習(xí)反比例函數(shù)要與學(xué)習(xí)其他函數(shù)一樣,要善于數(shù)形結(jié)合,由解析式聯(lián)想到圖像的位置及其性質(zhì),由圖像和性質(zhì)聯(lián)想比例系數(shù)k的符號(hào).
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):反比例的概念、圖像、性質(zhì)以及用待定系數(shù)法確定反比例函數(shù)的解析式.因?yàn)橐芯糠幢壤瘮?shù)就必須明確反比例函數(shù)的上述問題.
2.教學(xué)難點(diǎn) :畫反比例函數(shù)的圖像.因?yàn)榉幢壤瘮?shù)的圖像有兩個(gè)分支,而且這兩個(gè)分支的變化趨勢(shì)又不同,學(xué)生初次接觸,一定會(huì)感到困難.
3.教學(xué)疑點(diǎn):(1)反比例函數(shù)為何與x軸,y軸無交點(diǎn);(2)反比例函數(shù)的圖像只能說在第一、三象限或第二、四象限,而不能說經(jīng)過第幾象限,增減性也要說明在第幾象限(或說在它的每一個(gè)象限內(nèi)).
4.解決辦法:(1) 中隱含條件是 或 ;(2)雙曲線的兩個(gè)分支是斷開的,研究函數(shù)的增減性時(shí),要將兩個(gè)分支分別討論,不能一概而論.
四、教學(xué)步驟
(一)教學(xué)過程
提問:小學(xué)是否學(xué)過反比例關(guān)系?是如何敘述的?
由學(xué)生先考慮及討論一下.
答:小學(xué)學(xué)過:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做反比例的量,它們的關(guān)系叫做反比例關(guān)系.
看下面的實(shí)例:(出示幻燈)
1. 當(dāng)路程s一定時(shí),時(shí)間t與速度v成反比例;
2.當(dāng)矩形面積S一定時(shí),長(zhǎng)a與寬b成反比例;
它們分別可以寫成 (s是常數(shù)), (S是常數(shù))寫在黑板上,用以得出反比例函數(shù)的概念:(板書)
一般地,函數(shù) (k是常數(shù), )叫做反比例函數(shù).
即在上面的例子中,當(dāng)路程s是常數(shù)時(shí),時(shí)間t就是速度v的反比例函數(shù),能否說:速度v是時(shí)間t的反比例函數(shù)呢?
通過這個(gè)問題,使學(xué)生進(jìn)一步理解反比例函數(shù)的概念,只要滿足 (k是常數(shù), )就可以.因此可以說速度v是時(shí)間t的反比例函數(shù),因?yàn)?(s是常量).對(duì)第2個(gè)實(shí)例也一樣.
練習(xí)一:教材P129中1 口答.P130 1
根據(jù)前面學(xué)習(xí)特殊函數(shù)的經(jīng)驗(yàn),研究完函數(shù)的概念,跟著要研究的是什么?
答:圖像和性質(zhì).
通過這個(gè)問題,使學(xué)生對(duì)課本上給出的知識(shí)的發(fā)生、發(fā)展過程有一個(gè)明確的認(rèn)識(shí),以后
學(xué)生要研究其他函數(shù),也可以按照這種方式來研究.
下面,我們就來看桓隼?猓海ǔ鍪凈玫疲?/P>
例1 畫出反比例函數(shù) 與 的圖像.
提問:1.畫函數(shù)圖像的關(guān)鍵問題是什么?
答:合理、正確地選值列表.
2.在選值時(shí),你認(rèn)為要注意什么問題?
答:(1)由于函數(shù)圖像的特點(diǎn)還不清楚,多選幾個(gè)點(diǎn)較好;
(2)不能選 ,因?yàn)?時(shí)函數(shù)無意義;
(3)選整數(shù)較好計(jì)算和描點(diǎn).
這個(gè)問題中最核心的一點(diǎn)是關(guān)于 的問題,提醒學(xué)生注意.
3.你能不能自己完成這道題呢?
學(xué)生在練習(xí)本上列表、描點(diǎn)、連線,教師在黑板上板演,到連線時(shí)可暫停,讓學(xué)生先連完線之后,找一名同學(xué)上黑板連線,然后就這名同學(xué)的連線加以評(píng)價(jià)、總結(jié):
注意:(1)一般地,反比例函數(shù) 的圖像由兩條曲線組成,叫做雙曲線;
(2)這兩條曲線不相交;
(3)這兩條曲線無限延伸,無限靠近x軸和y軸,但永不會(huì)與x軸和y軸相交.
關(guān)于注意(3)可問學(xué)生:為什么圖像與x和y軸不相交?
通過這個(gè)問題既可加深學(xué)生對(duì)反比例函數(shù)圖像的記憶,又可培養(yǎng)學(xué)生思維的靈活性和深刻性.
再讓學(xué)生觀察黑板上的圖,提問:
1.當(dāng) 時(shí),雙曲線的兩個(gè)分支各在哪個(gè)象限?在每個(gè)象限內(nèi),y隨x的增大怎樣變化?
2.當(dāng) 時(shí),雙曲線的兩個(gè)分支各在哪個(gè)象限?在每個(gè)象限內(nèi),y隨x的增大怎樣變化?
這兩個(gè)問題由學(xué)生討論總結(jié)之后回答,教師板書:
對(duì)于雙曲線(1)當(dāng) :(1)當(dāng) 時(shí),雙曲線的兩分支位于一、三象限,y隨x的增大而減少;(2)當(dāng) 時(shí),雙曲線的兩分支位于二、四象限,y隨x的增大而增大.
3.反比例函數(shù)的這一性質(zhì)與正比例函數(shù)的性質(zhì)有何異同?
通過這個(gè)問題使學(xué)生能把學(xué)過的相關(guān)知識(shí)有機(jī)地串聯(lián)起來,便于記憶和應(yīng)用.
練習(xí)二:教材P129中2由學(xué)生在練習(xí)本上完成,教師巡回指導(dǎo).P130中2、3填在書上
上面,我們討論了反比例函數(shù)的概念、圖像和性質(zhì),下面我們?cè)賮砜匆粋(gè)不同類型的例題:(出示幻燈)
例2已知y與 成反比例,并且當(dāng) 時(shí), ,求 時(shí),y的值.
用提問的方式對(duì)此題加以分析:
(1)y與 成反比例是什么含義?
由學(xué)生討論這一問題,最后歸結(jié)為根據(jù)反比例函數(shù)的概念,這句話說明了: .
(2)根據(jù)這個(gè)式子,能否求出當(dāng) 時(shí),y的值?
(3)要想求出y的值,必須先知道哪個(gè)量呢?
(4)怎樣才能確定k的值?用什么條件?
答:用待定系數(shù)法,把 時(shí) 代入 ,求出k的值.
(5)你能否自己完成這道例題:
由一名同學(xué)板演,其他同學(xué)在練習(xí)本上完成.
例3 已知: , 與x成正比例, 與x成反比例,當(dāng) 時(shí), 時(shí), ,求y與x的解析式.
分析:一定要先寫出y與x的函數(shù)表達(dá)式 ,
要用x分別把 , 表示出來得 ,
要注意 不能寫成k,∴
解:設(shè) ,
.
由題意得
∴ .
(二)總結(jié)、擴(kuò)展
教師提問,學(xué)生思考回答:
1.什么是反比例函數(shù)?
2.反比例函數(shù)的圖像是什么樣的?
3.反比例函數(shù) 的性質(zhì)是什么?
4.命題方向及題型設(shè)置,反比例函數(shù)也是中考命題的主要考點(diǎn),其圖像和性質(zhì),以及其函數(shù)解析式的確定,常以填空題、選擇題出現(xiàn),在低檔題中,近兩年各省、市的中考試卷中出現(xiàn)不少將反比例函數(shù)與一次函數(shù)、幾何知識(shí)、三角知識(shí)等綜合編擬的解答題,豐富了壓軸題的形式和內(nèi)容.
五、布置作業(yè)
1.教材P130中4,5,6
2.選做:P130中B1,2
六、板書設(shè)計(jì)
13.8反比例函數(shù)及其圖像
引例:(1)例1: 例2: 例3:
(2)
1.反比例函數(shù):
2.反比例函數(shù)的性質(zhì) 探究活動(dòng)
已知:如圖,一次函數(shù)的圖像經(jīng)過第一、二、三象限,且與反比例函數(shù)的圖像交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D。 。
(1)求反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)A的橫坐標(biāo)為m, 的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng) 的面積等于 時(shí),試判斷過A、B兩點(diǎn)的拋物線在x軸上截得的線段長(zhǎng)能否等于3。如果能,求此時(shí)拋物線的解析式;如果不能,請(qǐng)說明理由。
解:(1)過點(diǎn)B作 軸于點(diǎn)H。
在Rt 中,
由勾股定理,得
又 ,
∴ 點(diǎn)B(-3,-1)。
設(shè)反比例函數(shù)的解析式為
。
∵ 點(diǎn)B在反比例函數(shù)的圖像上,
。
∴ 反比例函數(shù)的解析式為 。
(2)設(shè)直線AB的解析式為 。
由點(diǎn)A在第一象限,得 。
又由點(diǎn)A在函數(shù) 的圖像上,可求得點(diǎn)A的縱坐標(biāo)為 。
∵ 點(diǎn)B(-3,-1),點(diǎn) ,
∴ 解關(guān)于 、 的方程組,得
∴ 直線AB的解析式為 。
令 。
求得點(diǎn)D的橫坐標(biāo)為 。
過點(diǎn)A作 軸于點(diǎn)G
由已知,直線經(jīng)過第一、二、三象限,
∴ ,即 。
由此得
∴ 。
即 。
(3)過A、B兩點(diǎn)的拋物線在x軸上截得的線段長(zhǎng)不能等于3。
證明如下:
。
由 ,
得
解得 。
經(jīng)檢驗(yàn), 都是這個(gè)方程的根。
,
∴ 不合題意,舍去。
∴ 點(diǎn)A(1,3)。
設(shè)過A(1,3)、B(-3,-1)兩點(diǎn)的拋物線的解析式為 。
∴ 由此得
即 。
設(shè)拋物線與x軸兩交點(diǎn)的橫坐標(biāo)為 。
則
令
則 。
即 。
整理,得 。
,
∴ 方程 無實(shí)數(shù)根。
因此過A、B兩點(diǎn)的拋物線在x軸上截得的線段長(zhǎng)不能等于3。
反比例函數(shù)及其圖象
【反比例函數(shù)及其圖象】相關(guān)文章:
反比例函數(shù)的圖象與性質(zhì)教學(xué)反思(精選15篇)12-13
反比例函數(shù)的圖象與性質(zhì)教案范文(通用8篇)04-07
18.2函數(shù)的圖象 教案04-25
高中數(shù)學(xué)函數(shù)的圖象教案12-28
《正弦型函數(shù)y=Asin(ωx+φ) 的圖象》教案04-25
圖象04-29
18.2函數(shù)的圖象 -平面直角坐標(biāo)系教案04-25
一次函數(shù)的圖象與性質(zhì)說課稿(通用6篇)06-26
反比例函數(shù)檢測(cè)題04-27