初中數(shù)學(xué)教案[必備15篇]
作為一位杰出的老師,就有可能用到教案,教案有助于順利而有效地開展教學(xué)活動。那么什么樣的教案才是好的呢?以下是小編收集整理的初中數(shù)學(xué)教案,歡迎大家借鑒與參考,希望對大家有所幫助。
初中數(shù)學(xué)教案1
教學(xué)目標
1。進一步掌握有理數(shù)的運算法則和運算律;
2。使學(xué)生能夠熟練地按有理數(shù)運算順序進行混合運算;
3。注意培養(yǎng)學(xué)生的運算能力。
教學(xué)重點和難點
重點:有理數(shù)的混合運算。
難點:準確地掌握有理數(shù)的運算順序和運算中的符號問題。
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有認知結(jié)構(gòu)提出問題
1、計算(五分鐘練習(xí):
(5)-252;(6)(-2)3;(7)-7+3-6;(8)(-3)×(-8)×25;
(13)(-616)÷(-28);(14)-100-27;(15)(-1)101;(16)021;
(17)(-2)4;(18)(-4)2;(19)-32;(20)-23;
(24)3.4×104÷(-5)。
2、說一說我們學(xué)過的有理數(shù)的運算律:
加法交換律:a+b=b+a;
加法結(jié)合律:(a+b)+c=a+(b+c);
乘法交換律:ab=ba;
乘法結(jié)合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
二、講授新課
前面我們已經(jīng)學(xué)習(xí)了有理數(shù)的加、減、乘、除、乘方等運算,若在一個算式里,含有以上的混合運算,按怎樣的順序進行運算?
1、在只有加減或只有乘除的同一級運算中,按照式子的`順序從左向右依次進行。
審題:
(1)運算順序如何?
(2)符號如何?
說明:含有帶分數(shù)的加減法,方法是將整數(shù)部分和分數(shù)部分相加,再計算結(jié)果。帶分數(shù)分成整數(shù)部分和分數(shù)部分時的符號與原帶分數(shù)的符號相同。
課堂練習(xí)
審題:運算順序如何確定?
注意結(jié)果中的負號不能丟。
課堂練習(xí)
計算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);
2、在沒有括號的不同級運算中,先算乘方再算乘除,最后算加減。
例3計算:
(1)(-3)×(-5)2;
(2)[(-3)×(-5)]2;
(3)(-3)2-(-6);
(4)(-4×32)-(-4×3)2。
審題:運算順序如何?
解:(1)(-3)×(-5)2=(-3)×25=-75。
(2)[(-3)×(-5)]2=(15)2=225。
(3)(-3)2-(-6)=9-(-6)=9+6=15。
(4)(-4×32)-(-4×3)2
=(-4×9)-(-12)2
=-36-144
=-180。
注意:搞清(1),(2)的運算順序,(1)中先乘方,再相乘,(2)中先計算括號內(nèi)的,然后再乘方。(3)中先乘方,再相減,(4)中的運算順序要分清,第一項(-4×32)里,先乘方再相乘,第二項(-4×3)2中,小括號里先相乘,再乘方,最后相減。
課堂練習(xí)
計算:
(1)-72;(2)(-7)2;(3)-(-7)2;
(7)(-8÷23)-(-8÷2)3。
例4計算
(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4。
審題:(1)存在哪幾級運算?
(2)運算順序如何確定?
解:(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4
=4-(-25)×(-1)+87÷(-3)×1(先乘方)
=4-25-29(再乘除)
=-50。(最后相加)
注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1。
課堂練習(xí)
計算:
(1)-9+5×(-6)-(-4)2÷(-8);
(2)2×(-3)3-4×(-3)+15。
3、在帶有括號的運算中,先算小括號,再算中括號,最后算大括號。
課堂練習(xí)
計算:
三、小結(jié)
教師引導(dǎo)學(xué)生一起總結(jié)有理數(shù)混合運算的規(guī)律。
1、先乘方,再乘除,最后加減;
2、同級運算從左到右按順序運算;
3、若有括號,先小再中最后大,依次計算。
四、作業(yè)
1、計算:
2、計算:
(1)-8+4÷(-2);(2)6-(-12)÷(-3);
(3)3·(-4)+(-28)÷7;(4)(-7)(-5)-90÷(-15);
3、計算:
4、計算:
(7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5。
5、計算(題中的字母均為自然數(shù)):
(1)(-12)2÷(-4)3-2×(-1)2n-1;
(4)[(-2)4+(-4)2·(-1)7]2m·(53+35)。
初中數(shù)學(xué)教案2
教學(xué)目標:
1、使學(xué)生學(xué)會較熟煉地運用切線的判定方法和切線的性質(zhì)證明問題.
2、掌握運用切線的性質(zhì)和切線的判定的有關(guān)問題中輔助線引法的基本規(guī)律.
教學(xué)重點:
使學(xué)生準確、熟煉、靈活地運用切線的判定方法及其性質(zhì).教學(xué)難點:學(xué)生對題目不能準確地進行論證.證題中常會出現(xiàn)不知如何入手,不知往哪個方向證的情形.
教學(xué)過程:
一、新課引入:
我們已經(jīng)系統(tǒng)地學(xué)習(xí)了切線的判定方法和切線的性質(zhì),現(xiàn)在我們來利用這些知識證明有關(guān)幾何問題.
二、新課講解:
實際上在幾何證明題中,我們更多地將切線的判定定理和性質(zhì)定理應(yīng)用在具體的問題中,而一道幾何題的分析過程,是證題中的最關(guān)鍵步驟.p.109例3如圖7-58,已知:ab是⊙o的直徑,bc是⊙o的切線,切點為b,oc平行于弦ad.求證:dc是⊙o的切線.
分析:欲證cd是⊙o的切線,d是⊙o的弦ad的一個端點當然在⊙o上,屬于公共點已給定,而證直線是圓的切線的情形.所以輔助線應(yīng)該是連結(jié)oc.只要證od⊥cd即可.亦就是證∠odc=90°,所以只要證∠odc=∠obc即可,觀察圖形,兩個角分別位于△odc和△obc中,如果兩個三角形相似或全等都可以產(chǎn)生對應(yīng)角相等的結(jié)果.而圖形中已存在明顯的條件od=ob,oc=oc,只要證∠3=∠4,便可造成兩個三角形全等.
∠3如何等于∠4呢?題中還有一個已知條件ad∥oc,平行的位置關(guān)系,可以造成角的相等關(guān)系,從而導(dǎo)致∠3=∠4.命題得證.證明:連結(jié)od.教師向?qū)W生解釋書上的證題格式屬于推出法和因為所以法的聯(lián)用,以后證題中同學(xué)可以借鑒.p.110例4如圖7-59,在以o為圓心的`兩個同心圓中,大圓的弦ab和cd相等,且ab與小圓相切于點e求證:cd與小圓相切.
分析:欲證cd與小⊙o相切,但讀題后發(fā)現(xiàn)直線cd與小⊙o并未已知公共點.這個時候我們必須從圓心o向cd作垂線,設(shè)垂足為f.此時f點在直線cd上,如果我們能證得of等于小⊙o的半徑,則說明點f必在小⊙o上,即可根據(jù)切線的判定定理認定cd與小⊙o相切.題目中已告訴我們ab切小⊙o于e,連結(jié)oe,便得到小⊙o的一條半徑,再根據(jù)大⊙o中弦相等則弦心距也相等,則可得到of=oe.證明:連結(jié)oe,過o作of⊥cd,重足為f.
請同學(xué)們注意本題中證一條直線是圓的切線時,這種證明途徑是由直線與圓的公共點來給定所決定的.
練習(xí)一
p.111,1.已知:oc平分∠aob,d是oc上任意一點,⊙d與oa相切于點e.求證:ob與⊙d相切.分析:審題后發(fā)現(xiàn)欲證的ob與⊙d相切,屬于ob與⊙d無公共點的情況.這時應(yīng)從圓心d向⊙b作垂線,垂足為f,然后證垂線段df等于⊙b的一條半徑,而題目中已給oa與⊙d切于點e,只要連結(jié)de.再根據(jù)角平分線的性質(zhì),問題便得到解決.證明:連結(jié)de,作df⊥ob,重足為f.p.111中2.已知如圖7-61,△abc為等腰三角形,o是底邊bc的中點,⊙o與腰ab相切于點d.求證:ac與⊙o相切.
分析:欲證ac與⊙o相切,同第1題一樣,同屬于直線與圓的公共點未給定情況.輔助線的方法同第1題,證法類同.只不過要針對本題特點還要連結(jié)oa.從等腰三角形的”三線合一”的性質(zhì)出發(fā),證得oa平分∠bac,然后再根據(jù)角平分線的性質(zhì),使問題得到證明.證明:連結(jié)od、oa,作oe⊥ac,垂足為e.同學(xué)們想一想,在證明oe=od時,還可以怎樣證?
(答案)可通過“角、角、邊”證rt△odb≌rt△oec.
三、新課講解
。簽榕囵B(yǎng)學(xué)生閱讀教材的習(xí)慣讓學(xué)生閱讀109頁到110頁.從中總結(jié)出本課的主要內(nèi)容:
1.在證題中熟練應(yīng)用切線的判定方法和切線的性質(zhì).
2.在證明一條直線是圓的切線時,只能遇到兩種情形之一,針對不同的情形,選擇恰當?shù)淖C明途徑,務(wù)必使同學(xué)們真正掌握.
(1)公共點已給定.做法是“連結(jié)”半徑,讓半徑“垂直”于直線.
(2)公共點未給定.做法是從圓心向直線“作垂線”,證“垂線段等于半徑”.
四、布置作業(yè)
1.教材p.116中8、9.2.教材p.117中2.
初中數(shù)學(xué)教案3
第一課時
師:請同學(xué)們利用2分鐘時間完成“課前小測”。
生:(學(xué)生獨立完成)。
師:時間到,xxx同學(xué)來說一說你的答案。
生:......
師:我們前面已經(jīng)學(xué)習(xí)過平移等有關(guān)內(nèi)容,生活中是否還有其它運動變化呢?回答是肯定的,下面我們就來研究。今天我們學(xué)習(xí)第九章《實際問題與一元一次不等式》(課件出示課題),請同學(xué)們看“自學(xué)指導(dǎo)”的要求,利用5分鐘完成自學(xué)。
生:(學(xué)生邊閱讀課本邊用筆在重點處作記號)。
師:(全班巡視)。
師:時間到,剛才同學(xué)們再一次自學(xué)了課本上內(nèi)容,現(xiàn)在我們看下面的問題,誰有解題思路?(課件出示“問題”,并給學(xué)生1分鐘思考)
生:把一個圖形繞著一個點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn)。點O叫旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫旋轉(zhuǎn)角。
師:很好,請看幻燈片,議一議......,(課件出示“議一議”,并給學(xué)生1分鐘思考)
師:哪位學(xué)生能解決?
生:旋轉(zhuǎn)中心是“O”;A、B旋轉(zhuǎn)到了D、E;旋轉(zhuǎn)角是∠AOD;AO和DO相等,BO和EO相等;∠AOD=∠BOE
師:好,誰有疑問的舉手問。請繼續(xù)看探究,同桌之間合作完成。進行探究,觀察每組圖形中
①對應(yīng)點與旋轉(zhuǎn)中心所連線段有什么關(guān)系?
、趯(yīng)點與旋轉(zhuǎn)中心連線所成的角有什么關(guān)系?
生:(學(xué)生合作完成)。
師:哪位同學(xué)來講一講你的答案(稍等,讓學(xué)生舉手)。xxx同學(xué)請回答
生:對應(yīng)點到旋轉(zhuǎn)中心的距離相等;
對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
旋轉(zhuǎn)前后的圖形全等。
師:很好,這就是旋轉(zhuǎn)的性質(zhì),請在書中找到并作上記號。接下來我們看看下面例題。
。ㄕn件展示例1)請同學(xué)們試完成
生:(學(xué)生完成,)
師:(全班巡視,從中發(fā)現(xiàn)問題所在)
師:本題關(guān)鍵是確定△ADE三個頂點的對應(yīng)點,即它們旋轉(zhuǎn)后的位置。,看老師示范。
(在黑板上示范)
師:會了嗎?
生:會了。
師:那現(xiàn)在我們一起來完成下面的問題。
(課件顯示鞏固練習(xí))
師:時間到,請某同學(xué)把練習(xí)展示。
(把學(xué)生的答案在投影上投出,與學(xué)生一起對照答案評講)
師:請同學(xué)們思考下面圖案可以看做是一個菱形通過幾次旋轉(zhuǎn)得到的?每次旋轉(zhuǎn)了多少度?
。ㄕn件展示圖形)
生1:600
生2:1200
生3:2400
師:很好,也就是可只要是旋轉(zhuǎn)600的倍數(shù)就可能,那么香港區(qū)徽可以看作是什么“基本圖案”通過怎樣的旋轉(zhuǎn)而得到的?
生1:72 0
師:只能是720嗎
生2:可以是720倍數(shù)。
師:非常好,現(xiàn)在請同學(xué)們完成P58練習(xí)。
。▽W(xué)生完成后,老師評講)
師:這節(jié)課,主要學(xué)習(xí)了什么?
生:......
師:請利用10分鐘完成練習(xí)冊達標體驗1—5。
第二課時
師:請同學(xué)們利用2分鐘時間完成“課前小測”。
生:(學(xué)生獨立完成)。
師:時間到,xxx同學(xué),拿你的試卷答案上來給老師投影給大家看看你的答案是否真確。他做對沒有?
生:答案對了。
師:今天我們學(xué)習(xí)圖形的旋轉(zhuǎn)第2課時(課件出示課題),請同學(xué)們一起來欣賞下面幾個圖片。
生:(學(xué)生與老師一起看圖片)。
師:生活中我們有很多美麗的圖片,這上面的圖片與我們學(xué)習(xí)的`旋轉(zhuǎn)有聯(lián)系嗎?
生:......
師:答案是有的,請同學(xué)們看看下面兩個圖畫的形成。
。ㄕn件動畫顯示圖形的形成)
師:請同學(xué)來講講這兩個圖片是經(jīng)過什么過成形成的。
生:是由一個基本圖形繞一個點轉(zhuǎn)1800得到。
師:很好,那這樣一個圖形我們也給出了一個名稱,(課件展示出概念)
師:現(xiàn)在我們來探索一下一個圖形旋轉(zhuǎn)后的性質(zhì)。請每人準備一把三角尺自己旋轉(zhuǎn)一下,并將旋轉(zhuǎn)前的圖形和旋轉(zhuǎn)后的圖形都畫下來,然后進行比較。
生:(學(xué)生各自完成)。
師:請同學(xué)們說說,你們發(fā)現(xiàn)了什么?
生1:旋轉(zhuǎn)前后兩圖形完全一樣。
生2:旋轉(zhuǎn)前后三角尺的位置變了,但是有一個點還是連著的。
師:是的,很好,那是旋轉(zhuǎn)中心
生3:三角尺的一條長直角邊原來是豎著的,后來橫著了。
師:很好,通過大家的探索我們可能發(fā)現(xiàn)
旋轉(zhuǎn)前、后的圖形全等。
對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
每一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角彼此相等。
師:現(xiàn)在我們得用這以上的特征來試試畫一畫旋轉(zhuǎn)后的圖形請,畫出AB繞點O逆時針旋轉(zhuǎn)100°后的圖形。
師:(利用課件演示如何畫旋轉(zhuǎn)后的圖形)作圖關(guān)健是作出對應(yīng)點。
師:下面由同學(xué)們來試試畫出△ABC繞點C按順時針方向旋轉(zhuǎn)120°后的對應(yīng)的三角形。
生:(學(xué)生在下面動手)
師:xxx同學(xué)來拿試卷來展示你的答案。對了沒有?
生:對了。
師:很好,接著看我們的來那兩個鞏固題。10分鐘后(實物投影一個學(xué)生的練習(xí)卷)看這位同學(xué)的答案,對嗎?(學(xué)生給予判斷,老師用紅筆在練習(xí)卷上批改)。通過這一節(jié)課的學(xué)習(xí),你有什么收獲?還有哪些困惑?
生1:會作旋轉(zhuǎn)后的圖形。
生2:作圖重點是找到對應(yīng)點。
師:很好,今天的課至此,希望同學(xué)們能認真完成課后作業(yè)。
初中數(shù)學(xué)教案4
教學(xué)目標
1.使學(xué)生正確理解的意義,掌握的三要素;
2.使學(xué)生學(xué)會由上的已知點說出它所表示的數(shù),能將有理數(shù)用上的點表示出來;
3.使學(xué)生初步理解數(shù)形結(jié)合的思想方法.
教學(xué)重點和難點
重點:初步理解數(shù)形結(jié)合的思想方法,正確掌握畫法和用上的點表示有理數(shù).
難點:正確理解有理數(shù)與上點的對應(yīng)關(guān)系.
課堂教學(xué)過程 設(shè)計
一、從學(xué)生原有認知結(jié)構(gòu)提出問題
1.小學(xué)里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數(shù)?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?
待學(xué)生回答后,教師指出,這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容——.
二、講授新課
讓學(xué)生觀察掛圖——放大的溫度計,同時教師給予語言指導(dǎo):利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數(shù),根據(jù)溫度計的液面的不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當?shù)?長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))
在此基礎(chǔ)上,給出的定義,即規(guī)定了原點、正方向和單位長度的直線叫做.
進而提問學(xué)生:在上,已知一點P表示數(shù)-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應(yīng)的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向?qū)W生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例 變式練習(xí)
例1 畫一個,并在上畫出表示下列各數(shù)的點:
例2 指出上A,B,C,D,E各點分別表示什么數(shù).
課堂練習(xí)
示出來.
2.說出下面上A,B,C,D,O,M各點表示什么數(shù)?
最后引導(dǎo)學(xué)生得出結(jié)論:正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,零用原點表示.
四、小結(jié)
指導(dǎo)學(xué)生閱讀教材后指出:是非常重要的數(shù)學(xué)工具,它使數(shù)和直線上的點建立了對應(yīng)關(guān)系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.
本節(jié)課要求同學(xué)們能掌握的三要素,正確地畫出,在此還要提醒同學(xué)們,所有的有理數(shù)都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數(shù),至于上的哪些點不能表示有理數(shù),這個問題以后再研究.
五、作業(yè)
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數(shù)的點.
(2)A,H,D,E,O各點分別表示什么數(shù)?
2.在下面上,A,B,C,D各點分別表示什么數(shù)?
3.下列各小題先分別畫出,然后在上畫出表示大括號內(nèi)的一組數(shù)的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初中數(shù)學(xué)教案5
教學(xué)目標
本節(jié)在介紹不等式的基礎(chǔ)上,介紹了不等式的解集并用數(shù)軸表示,介紹了解簡單不等式的方法,讓學(xué)生進一步體會數(shù)形結(jié)合的作用。
知識與能力
1.使學(xué)生掌握不等式的解集的概念,以及什么是解不等式。
2.使學(xué)生育能夠借助數(shù)軸將不等式的解集直觀地表示出來,初步理解數(shù)形結(jié)合的思想。
過程與方法
1.通過回憶給學(xué)生介紹不等式的解集的概念。
2.教會學(xué)生怎樣在數(shù)軸上表示不等式的解集。
情感、態(tài)度與價值觀
1.通過反復(fù)的訓(xùn)練使學(xué)生認識到數(shù)軸的重要性,培養(yǎng)其數(shù)形結(jié)合的思想。
2.通過觀察、歸納、類比、推斷而獲得不等式的解集與數(shù)軸上的點之間的關(guān)系,體驗數(shù)學(xué)活動充滿探索性與創(chuàng)造性。
教學(xué)重、難點及教學(xué)突破
重點
1.認識不等式的解集的概念。
2.將不等式的解集表示在數(shù)軸上。
難點
學(xué)生對不等式的解是一個集合可能會不太理解。
教學(xué)突破
由于受方程思想的影響,學(xué)生對不等式的解集的接受和理解可能會有一定的困難,建議教師能結(jié)合簡單的不等式和實際問題讓學(xué)生體會不等式的解可以是一個集合,并組織學(xué)生討論舉例,加深理解。
另外,應(yīng)在本節(jié)的過程中讓學(xué)生能理解在數(shù)軸上表示不等式的解集,讓他們熟悉數(shù)形結(jié)合的思想。
教學(xué)步驟
一、新課導(dǎo)入
1.回顧提問:同學(xué)們,我們已經(jīng)學(xué)習(xí)了不等式,F(xiàn)在我們一起回顧一下什么是不等式,以及有關(guān)數(shù)軸的知識。
學(xué)生用自己的'語言描述不等式的定義,并基本說出數(shù)軸的三要素是:原點、正方向、單位長度。能將有理數(shù)在數(shù)軸上表示出來。
2.創(chuàng)設(shè)情景:我們現(xiàn)在知道了不等式的解不唯一,那么我們?nèi)绾螌⒉坏仁降慕馊勘硎境鰜砟?這就是我們這節(jié)課要解決的問題。
二、不等式的解集
1.講述不等式的解集的定義,引導(dǎo)學(xué)生觀察不等式x+2>5,并說出-3 、-2 、 3.5 、 7中哪些是不等式的解,哪些不是?-3 、-2不是不等式x+2>5的解,3.5 、 7是不等式的解。
2.給出“解不等式”的概念,并就上述例題由不完全歸納法給出不等式x+2>5的解集是x>3 。
3.將x>3在數(shù)軸上表示出來,并以此圖為例講述在數(shù)軸上表示基本不等式的方法:(1)在數(shù)軸上找到3;(2)向右表示比3大的點;(3)空心點表示不含有3,所以有下圖。
讓學(xué)生自己動手畫出x ≤ 3,并找學(xué)生上臺板演。
4.就學(xué)生在黑板上的板演,指出畫圖應(yīng)注意的事項,并讓學(xué)生觀察前后兩圖的區(qū)別。
通過對比兩圖的不同,發(fā)現(xiàn)區(qū)別是大于和小于導(dǎo)致圖上所取的方向不同,有等號和沒等號導(dǎo)致空心和實心的區(qū)別。
5.給出適當?shù)睦},鞏固本節(jié)內(nèi)容。
本課總結(jié)
這節(jié)課主要學(xué)習(xí)了什么是不等式的解集,并教學(xué)生在數(shù)軸上表示不等式的解集,體會數(shù)形結(jié)合的思想。
教學(xué)探討與反思
為了提高數(shù)學(xué)課的教學(xué)效果,教師必須使課堂教學(xué)過程符合學(xué)生的認知規(guī)律,并讓學(xué)生參與到課堂教學(xué)活動中來,使他們真正成為課堂教學(xué)的主體。教師對課堂教學(xué)的設(shè)計,應(yīng)著眼在為學(xué)生個性品質(zhì)的優(yōu)化創(chuàng)設(shè)最佳課堂教學(xué)環(huán)境。教師引導(dǎo)學(xué)生參與的是數(shù)學(xué)思維活動。
初中數(shù)學(xué)教案6
一、教學(xué)目標
(一)知識教學(xué)點
1、了解方程算術(shù)解法與代數(shù)解法的區(qū)別。
2、掌握:代數(shù)解法解簡易方程。
(二)能力訓(xùn)練點
1、通過代數(shù)解法解簡易方程的學(xué)習(xí)使學(xué)生認識問題頭腦不僵化,培養(yǎng)其創(chuàng)造性思維的能力。
2、通過代數(shù)法解簡易方程進一步培養(yǎng)學(xué)生運算能力和邏輯思維能力。
(三)德育滲透點
1、培養(yǎng)學(xué)生實事求是的`科學(xué)態(tài)度,用發(fā)展的眼光看問題的辯證唯物主義思想。
2、滲透化“未知”為“已知”的化歸思想。
(四)美育滲透點
通過用新的方法解簡易方程,使學(xué)生初步領(lǐng)略數(shù)學(xué)中的方法美。
二、學(xué)法引導(dǎo)
1、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法。注意教學(xué)中民主意識和學(xué)生的主體作用的體現(xiàn)。
2、學(xué)生學(xué)法:識記→練習(xí)反饋
三、重點、難點、疑點及解決辦法
1、重點:代數(shù)解法解簡易方程。
2、難點:解方程時準確把握兩邊都加上(或減去)、乘以(或除以)同一適當?shù)臄?shù)。
3、疑點:代數(shù)解法解簡易方程的依據(jù)。
四、課時安排
1課時
五、教具學(xué)具準備
投影儀或電腦、自制膠片
六、師生互動活動設(shè)計
教師創(chuàng)設(shè)情境,學(xué)生解決問題。教師介紹新的方法,學(xué)生反復(fù)練習(xí)。
初中數(shù)學(xué)教案7
教學(xué) 建議
一、知識結(jié)構(gòu)
二、重點、難點分析
本節(jié) 教學(xué) 的重點是不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.難點為不等式的解集的概念.
1.不等式的解與方程的解的意義的異同點
相同點:定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同.
不同點:解的個數(shù)不同,一般地,一個不等式有無數(shù)多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當 取大于 的數(shù)時,不等式 都成立,所以不等式 有無數(shù)多個解.
2.不等式的解與解集的區(qū)別與聯(lián)系
不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數(shù)的某個值,而不等式的解集,是指滿足這個不等式的未知數(shù)的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.
注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數(shù)值,都能使不等式成立;第二,解集外的任何一個數(shù)值,都不能使不等式成立.
3.不等式解集的表示方法
(1)用不等式表示
一般地,一個含未知數(shù)的不等式有無數(shù)多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .
(2)用數(shù)軸表示
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.
注意:在數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大,所以在數(shù)軸上表示不等式的解集時應(yīng)牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
一、素質(zhì) 教育 目標
(一)知識 教學(xué) 點
1.使學(xué)生了解不等式的解集、解不等式的概念,會在數(shù)軸上表示出不等式的解集.
2.知道不等式的“解集”與方程“解”的不同點.
(二)能力訓(xùn)練點
通過 教學(xué) ,使學(xué)生能夠正確地在數(shù)軸上表示出不等式的解集,并且能把數(shù)軸上的某部分數(shù)集用相應(yīng)的不等式表示.
(三)德育滲透點
通過講解不等式的“解集”與方程“解”的關(guān)系,向?qū)W生滲透對立統(tǒng)一的辯證觀點.
。ㄋ模┟烙凉B透點
通過本節(jié)課的學(xué)習(xí),讓學(xué)生了解不等式的解集可利用圖形來表達,滲透數(shù)形結(jié)合的數(shù)學(xué)美.
二、學(xué)法引導(dǎo)
1. 教學(xué) 方法:類比法、引導(dǎo)發(fā)現(xiàn)法、實踐法.
2.學(xué)生學(xué)法:明確不等式的解與解集的區(qū)別和聯(lián)系,并能熟練地用數(shù)軸表示不等式的解集,在數(shù)軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
三、重點·難點·疑點及解決辦法
。ㄒ唬┲攸c
1.不等式解集的概念.
2.利用數(shù)軸表示不等式的解集.
(二)難點
正確理解不等式解集的概念.
。ㄈ┮牲c
弄不清不等式的解集與方程的解的區(qū)別、聯(lián)系.
(四)解決辦法
弄清楚不等式的解與解集的概念.
四、課時安排
一課時.
五、教具學(xué)具準備
投影儀或電腦、自制膠片、直尺.
六、師生互動活動設(shè)計
。ㄒ唬┟鞔_目標
本節(jié)課重點學(xué)習(xí)不等式的解集,解不等式的概念并會用數(shù)軸表示不等式的解集.
。ǘ┱w感知
通過枚舉法來形象直觀地推出不等式的解集,再給出不等式解集的概念,從而更準確地讓學(xué)生掌握該概念.再通過師生的互動學(xué)習(xí)用數(shù)軸表示不等式的解集,從而為今后求不等式組的解集打下良好的基礎(chǔ).
(三) 教學(xué) 過程
1.創(chuàng)設(shè)情境,復(fù)習(xí)引入
。1)根據(jù)不等式的基本性質(zhì),把下列不等式化成 或 的形式.
、 、
(2)當 取下列數(shù)值時,不等式 是否成立?
l,0,2,-2.5,-4,3.5,4,4.5,3.
學(xué)生活動:獨立思考并說出答案:(1)① ② .(2)當 取1,0,2,-2.5,-4時,不等式 成立;當 取3.5,4,4.5,3時,不等式 不成立.
大家知道,當 取1,2,0,-2.5,-4時,不等式 成立.同方程類似,我們就說1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3這些使不等式 不成立的數(shù)就不是不等式 的解.
對于不等式 ,除了上述解外,還有沒有解?解的個數(shù)是多少?將它們在數(shù)軸上表示出來,觀察它們的分布有什么規(guī)律?
學(xué)生活動:思考討論,嘗試得出答案,指名板演如下:
【教法說明】啟發(fā)學(xué)生用試驗方法,結(jié)合數(shù)軸直觀研究,把已說出的不等式 的'解2,0,1,-2.5,-4用“實心圓點”表示,把不是 的解的數(shù)值3.5,4,4.5,3用“空心圓圈”表示,好像是“挖去了”.
師生歸納:觀察數(shù)軸可知,用“實心圓點”表示的數(shù)都落在3的左側(cè),3和3右側(cè)的數(shù)都用空心圓圈表示,從而我們推斷,小于3的每一個數(shù)都是不等式 的解,而大于或等于3的任何一個數(shù)都不是 的解.可以看出,不等式 有無限多個解,這無限多個解既包括小于3的正整數(shù)、正小數(shù)、又包括0、負整數(shù)、負小數(shù);把不等式 的無限多個解集中起來,就得到 的解的集會,簡稱不等式 的解集.
2.探索新知,講授新課
(1)不等式的解集
一般地,一個含有未知數(shù)的不等式的所有的解,組成這個不等式的解的集合,簡稱這個不等式的解集.
、僖苑匠 為例,說出一元一次方程的解的情況.
、诓坏仁 的解的個數(shù)是多少?能一一說出嗎?
。2)解不等式
求不等式的解集的過程,叫做解不等式.
解方程 求出的是方程的解,而解不等式 求出的則是不等式的解集,為什么?
學(xué)生活動:觀察思考,指名回答.
教師 歸納:正是因為一元一次方程只有惟一解,所以可以直接求出.例如 的解就是 ,而不等式 的解有無限多個,無法一一列舉出來,因而只能用不等式 或 揭示這些解的共同屬性,也就是求出不等式的解集.實際上,求某個不等式的解集就是運用不等式的基本性質(zhì),把原不等式變形為 或 的形式, 或 就是原不式的解集,例如 的解集是 ,同理, 的解集是 .
【教法說明】學(xué)生對一元一次方程的解印象較深,而不等式與方程的相同點較多,因而易將“不等式的解集”與“方程的解”混為一談,這里設(shè)置上述問題,目的是使學(xué)生弄清“不等式的解集”與“方程的解”的關(guān)系.
。3)在數(shù)軸上表示不等式的解集
①表示不等式 的解集:( )
分析:因為未知數(shù)的取值小于3,而數(shù)軸上小于3的數(shù)都在3的左邊,所以就用數(shù)軸上表示3的點的左邊部分來表示解集 .注意未知數(shù) 的取值不能為3,所以在數(shù)軸上表示3的點的位置上畫空心圓圈,表示不包括3這一點,表示如下:
②表示 的解集:( )
學(xué)生活動:獨立思考,指名板演并說出分析過程.
分析:因為未知數(shù)的取值可以為-2或大于-2的數(shù),而數(shù)軸上大于-2的數(shù)都在-2右邊,所以就用數(shù)鋼上表示-2的點和它的右邊部分來表示.如下圖所示:
注意問題:在數(shù)軸上表示-2的點的位置上,應(yīng)畫實心圓心,表示包括這一點.
【教法說明】利用數(shù)軸表示不等式解的解集,增強了解集的直觀性,使學(xué)生形象地看到不等式的解有無限多個,這是數(shù)形結(jié)合的具體體現(xiàn). 教學(xué) 時,要特別講清“實心圓點”與“空心圓圈”的不同用法,還要反復(fù)提醒學(xué)生弄清到底是“左邊部分”還是“右邊部分”,這也是學(xué)好本節(jié)內(nèi)容的關(guān)鍵.
3.嘗試反饋,鞏固知識
(1)不等式的解集 與 有什么不同?在數(shù)軸上表示它們時怎樣區(qū)別?分別在數(shù)軸上把這兩個解集表示出來.
(2)在數(shù)軸上表示下列不等式的解集.
、 、 ③ 、
。3)指出不等式 的解集,并在數(shù)軸上表示出來.
師生活動:首先學(xué)生在練習(xí)本上完成,然后 教師 抽查,最后與出示投影的正確答案進行對比.
【教法說明】 教學(xué) 時,應(yīng)強調(diào)2.(4)題的正確表示為:
我們已經(jīng)能夠在數(shù)軸上準確地表示出不等式的解集,反之若給出數(shù)軸上的某部分數(shù)集,還要會寫出與之對應(yīng)的不等式的解集來.
4.變式訓(xùn)練,培養(yǎng)能力
。1)用不等式表示圖中所示的解集.
【教法說明】強調(diào)“· ”“ °”在使用、表示上的區(qū)別.
(2)單項選擇:
、俨坏仁 的解集是(。
A. B. C. D.
②不等式 的正整數(shù)解為(。
A.1,2 B.1,2,3 C.1 D.2
、塾貌坏仁奖硎緢D中的解集,正確的是( )
A. B. C. D.
、苡脭(shù)軸表示不等式的解集 正確的是(。
學(xué)生活動:分析思考,說出答案.( 教師 給予糾正或肯定)
【教法說明】此題以搶答形式茁現(xiàn),更能激發(fā)學(xué)生探索知識的熱情.
。ㄋ模┛偨Y(jié)、擴展
學(xué)生小結(jié), 教師 完善:
1.? 本節(jié)重點:
。1)了解不等式的解集的概念.
。2)會在數(shù)軸上表示不等式的解集.
2.注意事項:
弄清“ · ”還是“ °”,是“左邊部分”還是“右邊部分”.
七、布置作業(yè)
初中數(shù)學(xué)教案8
1.初中數(shù)學(xué)教案模板
1.課題
填寫課題名稱(初中代數(shù)類課題)
2.教學(xué)目標
(1)知識與技能:
通過本節(jié)課的學(xué)習(xí),掌握......知識,提高學(xué)生解決實際問題的能力;
(2)過程與方法:
通過......(討論、發(fā)現(xiàn)、探究)的過程,提高......(分析、歸納、比較和概括)的能力;
(3)情感態(tài)度與價值觀:
通過本節(jié)課的學(xué)習(xí),增強學(xué)生的學(xué)習(xí)興趣,將數(shù)學(xué)應(yīng)用到實際生活中,增加學(xué)生數(shù)學(xué)學(xué)習(xí)的樂趣。
3.教學(xué)重難點
(1)教學(xué)重點:本節(jié)課的知識重點
(2)教學(xué)難點:易錯點、難以理解的知識點
4.教學(xué)方法(一般從中選擇3個就可以了)
(1)討論法
(2)情景教學(xué)法
(3)問答法
(4)發(fā)現(xiàn)法
(5)講授法
5.教學(xué)過程
(1)導(dǎo)入
簡單敘述導(dǎo)入課題的方式和方法(例:復(fù)習(xí)、類比、情境導(dǎo)出本節(jié)課的課題)
(2)新授課程(一般分為三個小步驟)
①簡單講解本節(jié)課基礎(chǔ)知識點(例:類比一元一次方程的解法,講解一元一次不等式的解法和步驟)。
②歸納總結(jié)該課題中的重點知識內(nèi)容,尤其對該注意的一些情況設(shè)置易錯點,進行強調(diào)?梢栽O(shè)計分組討論環(huán)節(jié)(例:分組討論一元一次不等式的解法,歸納總結(jié)一元一次不等式的方法步驟,設(shè)置系數(shù)化為一,負號要變號的.易錯點)。
、弁卣寡由,將所學(xué)知識拓展延伸到實際題目中,去解決實際生活中的問題(例:設(shè)置一元一次不等式的應(yīng)用題,學(xué)生再次體會一元一次不等式解決實際問題,并且再次鞏固不等式的解法)。
(3)課堂小結(jié)
教師提問,學(xué)生回答本節(jié)課的收獲。
(4)作業(yè)提高
布置作業(yè)(盡量與實際生活相聯(lián)系,有所創(chuàng)新)。
6.教學(xué)板書
2.初中數(shù)學(xué)教案格式
課程編碼:______________________________________
總學(xué)時 / 周學(xué)時: /
開課時間: 年 月 日 第 周至第 周
授課年級、專業(yè)、班級:___________________________
使用教材:_______________________________________
授課教師:_______________________________________
1.章節(jié)名稱
2.教學(xué)目的
3.課時安排
4.教學(xué)重點、難點
5.教學(xué)過程(包括教學(xué)內(nèi)容、教師活動、學(xué)生活動、教學(xué)方法等)
6.復(fù)習(xí)鞏固與作業(yè)要求
7.教學(xué)環(huán)境及教具準備
8.教學(xué)參考資料
9.教學(xué)后記
3.初中數(shù)學(xué)教案范文
教學(xué)目的
1.通過對多個實際問題的分析,使學(xué)生體會到一元一次方程作為實際問題的數(shù)學(xué)模型的作用。
2.使學(xué)生會列一元一次方程解決一些簡單的應(yīng)用題。
3.會判斷一個數(shù)是不是某個方程的解。
重點、難點
1.重點:會列一元一次方程解決一些簡單的應(yīng)用題。
2.難點:弄清題意,找出“相等關(guān)系”。
教學(xué)過程
一、復(fù)習(xí)提問
一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?
解:設(shè)小紅能買到工本筆記本,那么根據(jù)題意,得1.2x=6
因為1.2×5=6,所以小紅能買到5本筆記本。
二、新授
問題1:某校初中一年級328名 師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛?(讓學(xué)生思考后,回答,教師再作講評)
算術(shù)法:(328-64)÷44=264÷44=6(輛)
列方程:設(shè)需要租用x輛客車,可得44x+64=328
解這個方程,就能得到所求的結(jié)果。
問:你會解這個方程嗎?試試看?
問題2:在課外活動中,張老師發(fā)現(xiàn)同學(xué)們的年齡大多是13歲,就問同學(xué):“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”
通過分析,列出方程:13+x=(45+x)
問:你會解這個方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學(xué)思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?
三、鞏固練習(xí)
教科書第3頁練習(xí)1、2。
四、小結(jié)
本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實際問題。談?wù)勀愕膶W(xué)習(xí)體會。
五、作業(yè)
教科書第3頁,習(xí)題6.1第1、3題。
初中數(shù)學(xué)教案9
【教學(xué)目標】
1進一步認識方程及其解的概念。
2理解一元一次方程的概念,會根據(jù)簡單數(shù)量關(guān)系列一元一次方程。 3體驗用嘗試、檢驗解一元一次方程的思想與方法。
【教學(xué)重點】
一元一次方程的概念和解法貫穿整章,因此“一元一次方程的概念”與“嘗試檢驗法”求解是本節(jié)教學(xué)的重點。
【教學(xué)難點】
用嘗試、檢驗的方法解一元一次方程的過程比較復(fù)雜,是本節(jié)教學(xué)的難點。
【學(xué)習(xí)準備】
1.下面哪些式子是方程?
。1)3
(2)1;
。2)x31;
(3)3x5;
。4)2xy4;
。5)x31;
(6)3x14.
2.方程與等式有什么聯(lián)系與區(qū)別?
方程是解決實際問題的一個重要數(shù)學(xué)模型,需要我們進一步學(xué)習(xí)研究。
【課本導(dǎo)學(xué)】
思考一閱讀并解答課本第114頁“合作學(xué)習(xí)”的三個問題,思考:
1.列方程就是根據(jù)問題中的相等關(guān)系,寫出含有未知數(shù)的等式。
(1)原價為50元的衣服,按8折銷售,售價是多少元?原價若為x元呢?
。2)你能舉例說明你對“物體在水下,水深每增加10米,物體承受的壓力就增加
。3)張明投進x個,那么“小杰投進的球的個數(shù)”可以怎樣表示?“3人一共投進的球數(shù)”怎樣表示?
你是怎么理解“三人平均每人投進14個球”這句話的?
思考二觀察你所列的方程,這些方程之間有哪些共同的特點?請思考:
1.你可以從哪些角度對這些方程進行觀察呢?說說你的想法。
2.具有“合作學(xué)習(xí)”中所列方程一樣特點的方程叫做一元一次方程,你能說說這個名稱中“元”和“次”的含義嗎?[練習(xí)]完成課本第115頁課內(nèi)練習(xí)
1.『歸納』判斷一個方程是不是一元一次方程應(yīng)抓住哪幾個關(guān)鍵特點?
思考三閱讀課本第114頁倒數(shù)3行至第115頁正文結(jié)束,并思考下面的問題:
1.(1)如果一個數(shù)是方程有什么關(guān)系?
。2)如果一個數(shù)是方程350應(yīng)該是多少?
。3)要判斷一個數(shù)是不是方程3m?2?1?m的解,你會怎么做?2.對方程2x12
14的解,這個數(shù)代入方程的左邊計算得到的值與14 3 1
x500的解,這個數(shù)代入方程的左邊計算得到的值10 2x12
14進行嘗試求解時,你認為x必須是整數(shù)嗎
x可以取21嗎20呢?x可以取10或者比10還小的值嗎?為什么?說說你的想法。
[練習(xí)]完成課本第115頁課內(nèi)練習(xí)
2.『歸納』1.檢驗一個數(shù)是不是一元一次方程的解的步驟有哪些?
2.用嘗試檢驗的方法解一元一次方程,你覺得關(guān)鍵的步驟有哪些?【盤點收獲】
【學(xué)習(xí)檢測】
1.下列說法正確的是()
。╝)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程
2.下列式子中,屬于一元一次方程的是()(a)5x 1
。╞)ab8(c)1257(d)5x82x9 3
3.設(shè)某數(shù)為x,根據(jù)下列條件列出求該數(shù)的方程:
。1)某數(shù)加上1,再乘以2,得6.
。2)某數(shù)與7的和的2倍等于10.
。3)某數(shù)的`5倍比某數(shù)小3.
4.某校初一年級328名師生乘車外出春游,己有2輛校車可乘坐64人,還需租用44座的客車多少輛?
設(shè)還需租用x輛,則可列出方程44x+64=328.
(1)寫出一個方程,使它的解是
2.【作業(yè)布置】略
【課后反思】
課堂教學(xué)總是在“預(yù)設(shè)”與“生成”間交融進行,如何根據(jù)學(xué)情做好充分的預(yù)設(shè),又根據(jù)課堂生成靈活應(yīng)變,這既能反映教師的專業(yè)素養(yǎng),又能展示教師的教學(xué)功底.反芻本課,筆者認為還有以下幾方面值得反思與改進:
1.忽略課堂“火花”,錯失追問良機
在交流對方程的共同特征探討的環(huán)節(jié),有一個同學(xué)直接說出了“一元一次方程”的名稱.【片斷實錄】
師:討論好了吧.哪個小組先來說說你們所歸納的特點.生8:這些等式都含有未知數(shù)的,用x或y來表示.師(板書):嗯,都含有未知數(shù),這個未知數(shù)呢,有的地方是x,有的地方是y.還有呢?生8:還有黑板上的所有等式都是一元一次方程.
師(驚喜):嗯,你都知道了所有的等式都是我們今天接下來要具體研究的一元一次方程,這位同學(xué)已經(jīng)預(yù)習(xí)了呢.我們看,剛才這位同學(xué)歸納了:都含有未知數(shù).那么請同學(xué)們看得更仔細一點,未知數(shù)在這里具有什么特征呢?
不難看出,筆者在這里沒有很好地抓住學(xué)生的課堂即時生成資源,用一句“嗯,……,這位同學(xué)已經(jīng)預(yù)習(xí)了呢.”輕輕帶過,仍然拉著學(xué)生回到了預(yù)設(shè)的軌道“……,請同學(xué)們看得更仔細一點,未知數(shù)在這里具有什么特征呢?”如果當時直接問她“那么請你講講什
初中數(shù)學(xué)教案10
八、 板書 設(shè)計
6.2? 不等式的解集
一、1.不等式的解集:一般地,一個含有未知數(shù)的不等式的所有的解組成這個不等式的解的集合,簡稱不等式的`解集.
2.解不等式:求不等式解的過程
二、在數(shù)軸上表示不等式的解集
1. 2.
三、注意:(1)“ · ”與“ °”;(2)“左邊部分”與“右邊部分”.
初中數(shù)學(xué)教案11
教學(xué)目標
1.使學(xué)生在了解代數(shù)式概念的基礎(chǔ)上,能把簡單的與數(shù)量有關(guān)的詞語用代數(shù)式表示出來;
2.初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力.
教學(xué)重點和難點
重點:列代數(shù)式.
難點:弄清楚語句中各數(shù)量的意義及相互關(guān)系.
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有的認知結(jié)構(gòu)提出問題
1庇么數(shù)式表示乙數(shù):(投影)
(1)乙數(shù)比x大5;(x+5)
(2)乙數(shù)比x的2倍小3;(2x-3)
(3)乙數(shù)比x的倒數(shù)小7;(-7)
(4)乙數(shù)比x大16%((1+16%)x)
(應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)
2痹詿數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問題一樣,這一點同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字敘述的一句話或計算關(guān)系式(即日常生活語言)列成代數(shù)式北窘誑撾頤薔屠匆黃鷓習(xí)這個問題
二、講授新課
例1用代數(shù)式表示乙數(shù):
(1)乙數(shù)比甲數(shù)大5;(2)乙數(shù)比甲數(shù)的2倍小3;
(3)乙數(shù)比甲數(shù)的倒數(shù)小7;(4)乙數(shù)比甲數(shù)大16%
分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來,才能解決欲求的乙數(shù)
解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x
(本題應(yīng)由學(xué)生口答,教師板書完成)
最后,教師需指出:第4小題的答案也可寫成x+16%x
例2用代數(shù)式表示:
(1)甲乙兩數(shù)和的2倍;
(2)甲數(shù)的與乙數(shù)的的差;
(3)甲乙兩數(shù)的平方和;
(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;
(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積
分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來,然后依條件寫出代數(shù)式
解:設(shè)甲數(shù)為a,乙數(shù)為b,則
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)
(本題應(yīng)由學(xué)生口答,教師板書完成)
此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律鋇玜與b的差指的是(a-b),而b與a的差指的是(b-a)繃秸咼饗圓煌,這就是說,用文字語言敘述的句子里應(yīng)特別注意其運算順序
例3用代數(shù)式表示:
(1)被3整除得n的數(shù);
(2)被5除商m余2的數(shù)
分析本題時,可提出以下問題:
(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?
(2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?
解:(1)3n;(2)5m+2
(這個例子直接為以后讓學(xué)生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準備)
例4設(shè)字母a表示一個數(shù),用代數(shù)式表示:
(1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的;
(3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的的和
分析:啟發(fā)學(xué)生,做分析練習(xí)比緄1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a
(通過本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問題和解決問題的能力)
例5設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:
(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?
(2)教室里座位的行數(shù)是每行座位數(shù)的,教室里總共有多少個座位?
分析本題時,可提出如下問題:
(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(3)通過上述問題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))
解:(1)m(m+6)個;(2)(m)m個
三、課堂練習(xí)
1鄙杓資為x,乙數(shù)為y,用代數(shù)式表示:(投影)
(1)甲數(shù)的2倍,與乙數(shù)的的和;(2)甲數(shù)的與乙數(shù)的3倍的差;
(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商
2庇么數(shù)式表示:
(1)比a與b的和小3的數(shù);(2)比a與b的`差的一半大1的數(shù);
(3)比a除以b的商的3倍大8的數(shù);(4)比a除b的商的3倍大8的數(shù)
3庇么數(shù)式表示:
(1)與a-1的和是25的數(shù);(2)與2b+1的積是9的數(shù);
(3)與2x2的差是x的數(shù);(4)除以(y+3)的商是y的數(shù)
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)薄
四、師生共同小結(jié)
首先,請學(xué)生回答:
1痹躚列代數(shù)式?2繃寫數(shù)式的關(guān)鍵是什么?
其次,教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:對于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:
(1)列代數(shù)式,要以不改變原題敘述的數(shù)量關(guān)系為準(代數(shù)式的形式不唯一);
(2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個基本的數(shù)量關(guān)系;
(3)把用日常生活語言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準備幣求學(xué)生一定要牢固掌握
五、作業(yè)
1庇么數(shù)式表示:
(1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?
(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?
2幣閻一個長方形的周長是24厘米,一邊是a厘米,
求:(1)這個長方形另一邊的長;(2)這個長方形的面積.
學(xué)法探究
已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?
分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看有沒有規(guī)律.
當圓環(huán)為三個的時候,如圖:
此時鏈長為,這個結(jié)論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:
解:=99a+b(cm)
今天的內(nèi)容就介紹到這里了。
初中數(shù)學(xué)教案12
教學(xué)目標
1.使學(xué)生認識字母表示數(shù)的意義,了解字母表示數(shù)是數(shù)學(xué)的一大進步;
2.了解代數(shù)式的概念,使學(xué)生能說出一個代數(shù)式所表示的數(shù)量關(guān)系;
3.通過對用字母表示數(shù)的講解,初步培養(yǎng)學(xué)生觀察和抽象思維的能力;
4.通過本節(jié)課的教學(xué),使學(xué)生深刻體會從特殊到一般的的數(shù)學(xué)思想方法。
教學(xué)建議
1. 知識結(jié)構(gòu):本小節(jié)先回顧了小學(xué)學(xué)過的字母表示的兩種實例,一是運算律,二是公式,從中看出字母表示數(shù)的優(yōu)越性,進而引出代數(shù)式的概念。
2.教學(xué)重點分析:教科書,介紹了小學(xué)用字母表示數(shù)的實例,一個是運算律,一個是常用公式,上述兩種例子應(yīng)用廣泛,且能很好地體現(xiàn)用字母表示數(shù)所具有的簡明、普遍的優(yōu)越性,用字母表示是數(shù)學(xué)從算術(shù)到代數(shù)的一大進步,是代數(shù)的顯著特點。運用算術(shù)的方法解決問題,是小學(xué)學(xué)生的思維方法 ,現(xiàn)在,從具體的數(shù)過渡到用字母表示數(shù),滲透了抽象概括的思維方法,在認識上是一個質(zhì)的飛躍。對代數(shù)式的概念課文沒有直接給出,而是用實例形象地說明了代數(shù)式的概念。對代數(shù)式的概念可以從三個方面去理解:
(1)從具體的數(shù)到用字母表示數(shù),是抽象思維的開始,體現(xiàn)了特殊與一般的辨證關(guān)系,用字母表示數(shù)具有簡明、普遍的優(yōu)越性.
(2)代數(shù)式中并不要求數(shù)和表示數(shù)的字母同時出現(xiàn),單獨的一個數(shù)和字母也是代數(shù)式.如:2,m都是代數(shù)式.
等都不是代數(shù)式.
3.教學(xué)難點分析:能正確說出一個代數(shù)式的數(shù)量關(guān)系,即用語言表達代數(shù)式的意義,一定要理清代數(shù)式中含有的各種運算及其順序。用語言表達代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不引起誤會為出發(fā)點。
如:說出代數(shù)式7(a-3)的意義。
分析 7(a-3)讀成7乘a減3,這樣就產(chǎn)生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數(shù)式7(a-3)的最后運算是積,應(yīng)把a-3作為一個整體。所以,7(a-3)的意義是7與(a-3)的積。
4.書寫代數(shù)式的注意事項:
(1)代數(shù)式中數(shù)字與字母或者字母與字母相乘時,通常把乘號簡寫作“·”或省略不寫,同時要求數(shù)字應(yīng)寫在字母前面.
如3×a ,應(yīng)寫作3.a 或?qū)懽?a ,a×b 應(yīng)寫作3.a 或?qū)懽鱝b .帶分數(shù)與字母相乘,應(yīng)把帶分數(shù)化成假分數(shù),
#FormatImgID_0#
.數(shù)字與數(shù)字相乘一般仍用“×”號.
(2)代數(shù)式中有除法運算時,一般按照分數(shù)的寫法來寫.
(3)含有加減運算的代數(shù)式需注明單位時,一定要把整個式子括起來.
5.對本節(jié)例題的分析:
例1是用代數(shù)式表示幾個比較簡單的數(shù)量關(guān)系,這些小學(xué)都學(xué)過.比較復(fù)雜一些的數(shù)量關(guān)系的代數(shù)式表示,課文安排在下一節(jié)中專門介紹.
例2是說出一些比較簡單的代數(shù)式的意義.因為代數(shù)式中用字母表示數(shù),所以把字母也看成數(shù),一種特殊的數(shù),就可以像看待原來比較熟悉的`數(shù)式一樣,說出一個代數(shù)式所表示的數(shù)量關(guān)系,只是另外還要考慮乘號可能省略等新規(guī)定而已.
6.教法建議
(1)因為這一章知識大部分在小學(xué)學(xué)習(xí)過,講授新課之前要先復(fù)習(xí)小學(xué)學(xué)過的運算律,在學(xué)生原有的認知結(jié)構(gòu)上,提出新的問題。這樣即復(fù)習(xí)了舊知識,又引出了新知識,能激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)中,一定要注意發(fā)揮本章承上啟下的作用,搞好小學(xué)數(shù)學(xué)與初中代數(shù)的銜接,使學(xué)生有一個良好的開端。
(2)在本節(jié)的學(xué)習(xí)過程中,要使學(xué)生理解代數(shù)式的概念,首先要給學(xué)生多舉例子(學(xué)生比較熟悉、貼近現(xiàn)實生活的例子),使學(xué)生從感性上認識什么是代數(shù)式,理清代數(shù)式中的運算和運算順序,才能正確說出一個代數(shù)式所表示的數(shù)量關(guān)系,從而認識字母表示數(shù)的意義——普遍性、簡明性,也為列代數(shù)式做準備。
(3)條件比較好的學(xué)校,老師可選用一些多媒體課件,激發(fā)學(xué)生的學(xué)習(xí)興趣,增強學(xué)生自主學(xué)習(xí)的能力。
(4)老師在講解第一節(jié)之前,一定要對全章內(nèi)容和課時安排有一個了解,注意前后知識的銜接,只有這樣,我們老師才能教給學(xué)生系統(tǒng)的而不是一些零散的知識,久而久之,學(xué)生頭腦中自然會形成一個完整的知識體系。
(5)因為是新學(xué)期代數(shù)的第一節(jié)課,老師一定要給學(xué)生一個好印象,好的開端等于成功了一半。那么,怎么才能給學(xué)生留下好印象呢?首先,你要盡量在學(xué)生面前展示自己的才華。比,英語口語好的老師,可以用英語做一個自我介紹,然后為學(xué)生說一段祝福語。第二,上課時盡量使用多種語言與學(xué)生交流,其中包括情感語言(眉目語言、手勢語言等),讓學(xué)生感受到老師對他的關(guān)心。
7.教學(xué)重點、難點:
重點:用字母表示數(shù)的意義
難點:學(xué)會用字母表示數(shù)及正確說出一個代數(shù)式所表示的數(shù)量關(guān)系。
教學(xué)設(shè)計示例
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有的認知結(jié)構(gòu)提出問題
1在小學(xué)我們曾學(xué)過幾種運算律?都是什么?如可用字母表示它們?
(通過啟發(fā)、歸納最后師生共同得出用字母表示數(shù)的五種運算律)
(1)加法交換律 a+b=b+a;
(2)乘法交換律 a·b=b·a;
(3)加法結(jié)合律 (a+b)+c=a+(b+c);
(4)乘法結(jié)合律 (ab)c=a(bc);
(5)乘法分配律 a(b+c)=ab+ac
指出:(1)“×”也可以寫成“·”號或者省略不寫,但數(shù)與數(shù)之間相乘,一般仍用“×”;
(2)上面各種運算律中,所用到的字母a,b,c都是表示數(shù)的字母,它代表我們過去學(xué)過的一切數(shù)
2(投影)從甲地到乙地的路程是15千米,步行要3小時,騎車要1小時,乘汽車要0.25小時,試問步行、騎車、乘汽車的速度分別是多少?
3若用s表示路程,t表示時間,ν表示速度,你能用s與t表示ν嗎?
4(投影)一個正方形的邊長是a厘米,則這個正方形的周長是多少?面積是多少?
(用I厘米表示周長,則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)
此時,教師應(yīng)指出:(1)用字母表示數(shù)可以把數(shù)或數(shù)的關(guān)系,簡明的表示出來;(2)在公式與中,用字母表示數(shù)也會給運算帶來方便;(3)像上面出現(xiàn)的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代數(shù)式.那么究竟什么叫代數(shù)式呢?代數(shù)式的意義又是什么呢?這正是本節(jié)課我們將要學(xué)習(xí)的內(nèi)容.
三、講授新課
1代數(shù)式
單獨的一個數(shù)字或單獨的一個字母以及用運算符號把數(shù)或表示數(shù)的字母連接而成的式子叫代數(shù)式.學(xué)習(xí)代數(shù),首先要學(xué)習(xí)用代數(shù)式表示數(shù)量關(guān)系,明確代數(shù)上的意義
2舉例說明
例1 填空:
(1)每包書有12冊,n包書有__________冊;
(2)溫度由t℃下降到2℃后是_________℃;
(3)棱長是a厘米的正方體的體積是_____立方厘米;
(4)產(chǎn)量由m千克增長10%,就達到_______千克
(此例題用投影給出,學(xué)生口答完成)
解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m
例2 說出下列代數(shù)式的意義:
解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;
(5)a2+b2的意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方
說明:(1)本題應(yīng)由教師示范來完成;
(2)對于代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不致引起誤會為出發(fā)點如第(1)小題也可以說成“a的2倍加上3”或“a的2倍與3的和”等等
例3 用代數(shù)式表示:
(1)m與n的和除以10的商;
(2)m與5n的差的平方;
(3)x的2倍與y的和;
(4)ν的立方與t的3倍的積
分析:用代數(shù)式表示用語言敘述的數(shù)量關(guān)系要注意:①弄清代數(shù)式中括號的使用;②字母與數(shù)字做乘積時,習(xí)慣上數(shù)字要寫在字母的前面
四、課堂練習(xí)
1填空:(投影)
(1)n箱蘋果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_____厘米;
(3)底為a,高為h的三角形面積是______;
(4)全校學(xué)生人數(shù)是x,其中女生占48%?則女生人數(shù)是____,男生人數(shù)是____
2說出下列代數(shù)式的意義:(投影)
3用代數(shù)式表示:(投影)
(1)x與y的和; (2)x的平方與y的立方的差;
(3)a的60%與b的2倍的和; (4)a除以2的商與b除3的商的和
五、師生共同小結(jié)
首先,提出如下問題:
1本節(jié)課學(xué)習(xí)了哪些內(nèi)容?2用字母表示數(shù)的意義是什么?
3什么叫代數(shù)式?
教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:①代數(shù)式實際上就是算式,字母像數(shù)字一樣也可以進行運算;②在代數(shù)式和運算結(jié)果中,如有單位時,要正確地使用括號
六、作業(yè)
1一個三角形的三條邊的長分別的a,b,c,求這個三角形的周長
2張強比王華大3歲,當張強a歲時,王華的年齡是多少?
3飛機的速度是汽車的40倍,自行車的速度是汽車的1/3 ,若汽車的速度是ν千米/時,那么,飛機與自行車的速度各是多少?
4a千克大米的售價是6元,1千克大米售多少元?
5圓的半徑是R厘米,它的面積是多少?
6用代數(shù)式表示:
(1)長為a,寬為b米的長方形的周長;
(2)寬為b米,長是寬的2倍的長方形的周長;
(3)長是a米,寬是長的1/3 的長方形的周長;
(4)寬為b米,長比寬多2米的長方形的周長
初中數(shù)學(xué)教案13
活動目標
1、復(fù)習(xí)
7的組成,練習(xí)用數(shù)的組成、分解知識進行7的加減運算。
2、學(xué)習(xí)
7的加減,能根據(jù)推理列算式,進一步理解交換兩個加數(shù)的位置,得數(shù)不變的規(guī)律活動準備7以內(nèi)的`數(shù)字卡片、課件、幼兒用書第1冊第47頁、鉛筆。
活動過程
1、復(fù)習(xí)7的組成,列出7的分合式。
。1)拍手對數(shù):教師拍手和幼兒拍手合起來是7下。
。2)填數(shù)活動。給7的組成填上合適的數(shù)。
2、新授7的加減法:
(1)教師演示課件出題,請幼兒列算式。先列加法,再列減法。
、"樹上飛來了1只小鳥,后來又飛來了6只小鳥,請問,現(xiàn)在書上一共有幾只小鳥?"引導(dǎo)幼兒列出加法算式1+6=7。"如果是先飛來了6只小鳥,有飛來了1只小鳥呢?"怎么列算式?6+1=7,讓幼兒發(fā)現(xiàn)將加號兩邊的數(shù)互換位置以后,總數(shù)不變。
、谝龑(dǎo)幼兒根據(jù)推理的方法,列出7的第一組減法算式:7—1=6 7—6=1
。2)請幼兒根據(jù)7的分合式,自己探索將7的其它幾組算式列出來,教師指導(dǎo)。
。3)利用快問快答的形式,反復(fù)練習(xí)7的加減法運算。
3、組織幼兒翻開幼兒用書,觀察圖意,填寫正確的數(shù)字或算式,鞏固7的加減法。
活動延伸
請幼兒回家以后和父母一起練習(xí)7的加減法,學(xué)習(xí)解決生活中的一些數(shù)字問題。
初中數(shù)學(xué)教案14
學(xué)習(xí)目標:
1、通過具體動手操作得出矩形的概念,知道矩形與平行四邊形的區(qū)別與聯(lián)系
2、通過類比平行四邊形的性質(zhì)定理,推導(dǎo)并掌握矩形的性質(zhì)定理,會用定理進行一些簡單的計算證明、
3、通過矩形的對角線相等這一性質(zhì)能推導(dǎo)出直角三角形斜邊上的中線等于斜邊的一半,感受直角三角形與矩形之間的內(nèi)在聯(lián)系,發(fā)展學(xué)生的合理推理的能力
學(xué)習(xí)重難點:
重點:矩形的性質(zhì)定理
難點:靈活應(yīng)用矩形的性質(zhì)進行有關(guān)的'計算與證明
課前準備
教具準備:活動平行四邊形框架、教師準備PPT課件
教學(xué)過程:
知識回顧
1、什么叫平行四邊形?
2、平行四邊形有哪些性質(zhì)?
【設(shè)計意圖】:
通過對舊知的復(fù)習(xí),一方面鞏固就知,另一方面為學(xué)習(xí)新知做好鋪墊
合作探究一:矩形的定義
閱讀課本第17-18頁,“實驗與探究”,思考:什么叫做矩形?
用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示下圖,當平行四邊形的一個內(nèi)角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形、從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?
【設(shè)計意圖】:
通過小組合作觀察,討論平行四邊形具備什么條件時,就成了矩形,自己歸納出矩形的定義、給學(xué)生更多的思考空間,促進學(xué)生積極思考,發(fā)展學(xué)生的思維
歸納:有一個角是直角的平行四邊形叫做矩形、
合作探究二:矩形的性質(zhì)定理
1、自主完成18頁的觀察與思考,通過實際操作回答提出的問題
2、小組合作:完成對性質(zhì)的證明過程
【設(shè)計意圖】:
通過利用手中的矩形紙片動手操作使學(xué)生對矩形的性質(zhì)獲得豐富的直觀體驗,為總結(jié)矩形的性質(zhì)定理打下堅實基礎(chǔ)
矩形的性質(zhì)定理1:矩形的四個角都是直角
矩形的性質(zhì)定理2:矩形的兩條對角線相等
合作探究三:直角三角形的性質(zhì)定理3
設(shè)矩形的對角線AC與BD交于點O,那么,BE是Rt△AB中一條怎樣的特殊線段
。˙O是Rt△ABC中斜邊AC上的中線)它與AC有什么大小關(guān)系,為什么?
【設(shè)計意圖】:
根據(jù)圖形學(xué)生很容易猜想結(jié)果,關(guān)鍵是從數(shù)學(xué)的角度證明留足充分的時間讓學(xué)生交流,教師適時引導(dǎo),明確論證方法、學(xué)生獨立完成證明,以培養(yǎng)學(xué)生的推理能力、讓學(xué)生感受數(shù)學(xué)結(jié)論的確定性和證明的必要性
結(jié)論:直角三角形斜邊上的中線等于斜邊的一半
例題講解:
例1、如圖,矩形ABCD的兩條對角線相交于點O,∠AOB=60°,AB=6㎝,求矩形對角線AC的長?
當堂檢測:
1、矩形具有而平行四邊形不具有的性質(zhì)()
。ˋ)對角相等(B)對邊相等(C)對角線相等(D)對角線互相平分
2、已知Rt△ ABC中,∠ABC=900,BD是斜邊AC上的中線
。1)若BD=3㎝,則AC=㎝
。2)若∠C=30°,AB=5㎝,則AC=㎝,BD=㎝
3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的長
4、工人師傅做鋁合金窗框分下面三個步驟進行:
。1)先截出兩對符合規(guī)格的鋁合金窗料(如圖1),使AB=CD,EF=GH;
。2)擺放成如圖(2)的四邊形,則這時窗框的形狀是_____,根據(jù)的數(shù)學(xué)道理是__________;
。3)將直角尺靠緊窗框的一個角(如圖3)調(diào)整窗框的邊框,當直角尺的兩條直角邊與窗框無縫隙時(如圖4),說明窗框合格,這時窗框是____,根據(jù)的數(shù)學(xué)道理是________________。
課堂小結(jié):
請說出你本節(jié)課的收獲,與大家一塊分享!
作業(yè):
課本P、20第2題
板書設(shè)計:
xxx
初中數(shù)學(xué)教案15
第一課時
素質(zhì)教育目標
。ㄒ唬┲R教學(xué)點
1.使學(xué)生初步了解統(tǒng)計知識是應(yīng)用廣泛的數(shù)學(xué)內(nèi)容 .
2.了解平均數(shù)的意義,會計算一組數(shù)據(jù)的平均數(shù) .
3.當一組數(shù)據(jù)的數(shù)值較大時,會用簡算公式計算一組數(shù)據(jù)的平均數(shù) .
。ǘ┠芰τ(xùn)練點
培養(yǎng)學(xué)生的觀察能力、計算能力 .
。ㄈ┑掠凉B透點
1.培養(yǎng)學(xué)生認真、耐心、細致的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣 .
2.滲透數(shù)學(xué)來源于實踐,反地來又作用于實踐的觀點 .
。ㄋ模┟烙凉B透點
通過本課的學(xué)習(xí),滲透數(shù)學(xué)公式的簡單美和結(jié)構(gòu)的嚴謹美,展示了寓深奧于淺顯,寓紛繁于嚴謹?shù)霓q證統(tǒng)一的數(shù)學(xué)美 .
重點·難點·疑點及解決辦法
1.教學(xué)重點:平均數(shù)的概念及其計算 .
2.教學(xué)難點:平均數(shù)的簡化計算 .
3.教學(xué)疑點:平均數(shù)簡化公式的應(yīng)用,a如何選擇 .
4.解決辦法:分清兩個公式,公式②的運用要選擇一個適當?shù)腶 .
教學(xué)步驟
。ㄒ唬┟鞔_目標
在日常生活中,我們常與數(shù)據(jù)打交道,例如,電視臺每天晚上都要預(yù)報第二天當?shù)氐淖畹蜌鉁嘏c最高氣溫,商店每天都要結(jié)算一下當天的營業(yè)額,每個班次的飛機都要統(tǒng)計一下乘客的人數(shù)等.這些都涉及數(shù)據(jù)的計算問題.請同學(xué)們思考下面問題.(教師出示幻燈片)
為了從甲乙兩名學(xué)生中選拔一人參加射擊比賽,對他們的射擊水平進行了測驗.兩人在相同條件下各射靶10次,命中的環(huán)數(shù)如下:
甲 7 8 6 8 6 5 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
1.怎樣比較兩個人的成績?2.應(yīng)選哪一個人參加射擊比賽?
教師要引導(dǎo)學(xué)生觀察,給學(xué)生充分的時間去思考,并可以分成小組討論解決辦法.
對于這個問題,部分學(xué)生可能感到無從下手,部分學(xué)生可能想到去比較兩組數(shù)據(jù)的平均,讓學(xué)生動手具體算一下兩組數(shù)據(jù)的平均數(shù)結(jié)果它們相等在學(xué)生無法解決此問題的情況下,教師說明,這正是本章要解決的問題之一(寫出課題).這樣做的目的是教師有意創(chuàng)設(shè)問題情境、制造懸念,這不僅能激發(fā)學(xué)生學(xué)習(xí)的積極性和自覺性,引起學(xué)生對所學(xué)課程的注意,還能誘發(fā)學(xué)生探求新知識的濃厚興趣.
。ǘ┱w感知
解決類似上述的問題要用到統(tǒng)計學(xué)的知識,統(tǒng)計學(xué)是一門研究如何收集、整理、分析數(shù)據(jù)并據(jù)之做出推斷的科學(xué),它以概率論為基礎(chǔ),著重研究如何根據(jù)樣本的性質(zhì)去推測總體的性質(zhì).在當今的信息時代,統(tǒng)計學(xué)的應(yīng)用非常廣泛,以至于它已滲透到整個社會生活的各個方面.本章我們將學(xué)習(xí)統(tǒng)計學(xué)的.一些初步知識.
。ㄈ┙虒W(xué)過程
這節(jié)課我們首先來學(xué)習(xí)平均數(shù).
1.(出示幻燈片)請同學(xué)看下面問題:
某班第一小組一次數(shù)學(xué)測驗的成績?nèi)缦拢?/p>
86 91 100 72 93 89 90 85 75 95
這個小組的平均成績是多少?
教師引導(dǎo)學(xué)生動筆計算,并找一名學(xué)生到黑板板演,講完引例后,引導(dǎo)學(xué)生歸納出求平均數(shù)方法,這樣做使學(xué)生對平均數(shù)的計算公式能有深刻的認識 .
2.平均數(shù)的概念及計算公式
一般地,如果有n個數(shù) .
那么 ①
叫做這n個數(shù)的平均數(shù), 讀作“x撥” .
這是在初中數(shù)學(xué)課本中第一次出現(xiàn)帶有省略號的用字母表示的n個數(shù)相加的一般寫法 .學(xué)生對此可能會感到比較抽象,不太習(xí)慣,要向?qū)W生強調(diào),采用這種寫法是簡化表示,是為了使問題的討論具有一般性 .教師應(yīng)通過對公式的剖析,使學(xué)生正確理解公式,并掌握公式中各元素的意義 .
3.平均數(shù)計算公式①的應(yīng)用
例1 一個地區(qū)某年1月上旬各天的最低氣溫依次是(單位:℃):
。6,-5,-7,-6,-4,-5,-7,-8,-7
求它們的平均氣溫 .
讓學(xué)生動手計算,以鞏固平均數(shù)計算公式(一名學(xué)生板演)
教師應(yīng)強調(diào):①解題格式 .②在統(tǒng)計學(xué)里處理的數(shù)據(jù)包括負數(shù) .③在本章中,如無特殊說明,平均數(shù)計算結(jié)果保留的位數(shù)與原數(shù)據(jù)相同 .
例2 從一批機器零件毛坯中取出20件,稱得它們的質(zhì)量如下(單位:千克):
210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215
計算它們的平均質(zhì)量 .(用投影儀打出)
引導(dǎo)學(xué)生兩人一組完成計算,然后一起對答案 .由于數(shù)據(jù)較大,計算較繁,可能會出現(xiàn)不同的答案 .正好為下面提出簡化計算公式作好鋪墊 .
教師提出問題:像例2這樣,數(shù)據(jù)較大,計算較繁,因而容易出錯,有沒有較為簡便的算法呢?引導(dǎo)學(xué)生觀察數(shù)據(jù)有什么特點?都接近于哪一個數(shù)?啟發(fā)學(xué)生討論,尋找簡便算法 .
學(xué)生回答:數(shù)據(jù)都在200左右波動,可將各數(shù)據(jù)同時減去200,轉(zhuǎn)而計算一組數(shù)值較小的新數(shù)據(jù)的平均數(shù),至此讓學(xué)生再一次兩人一組用簡便方法計算例2,并與前面計算的結(jié)果相比較是否一樣 .
講完例2后,教師指出幾點:常數(shù)a的取法不是惟一的; 讀作“x——撇——撥”;;簡化計算的結(jié)果與前面毛算的結(jié)果相同 .
通過學(xué)生的動手計算,若產(chǎn)生困難或錯誤,教師及時點撥,引導(dǎo)學(xué)生尋找解決問題的方法,這不僅可以激發(fā)學(xué)生學(xué)習(xí)的興趣,更培養(yǎng)了學(xué)生的發(fā)散思維能力,同時也使學(xué)生對公式②的推導(dǎo)更容易接受 .
3.推導(dǎo)公式②
一般地,當一組數(shù)據(jù) 的各個數(shù)值較大時,可將各數(shù)據(jù)同時減去一個適當?shù)某?shù)a,得到,
那么 ,
因此,
即 ②
為了加深學(xué)生對公式②的認識,再讓學(xué)生指出例2的 、 、 各是什么?(學(xué)生回答)
課堂練習(xí):
教材P148中~P149中1,2,3
。ㄋ模┛偨Y(jié)、擴展
知識小結(jié):1.統(tǒng)計學(xué)是一門與數(shù)據(jù)打交道的學(xué)問,應(yīng)用十分廣泛 .本章將要學(xué)習(xí)的是統(tǒng)計學(xué)的初步知識 .
2.求n個數(shù)據(jù)的平均數(shù)的公式① .
3.平均數(shù)的簡化計算公式② .這個公式很重要,要學(xué)會運用 .
方法小結(jié):通過本節(jié)課我們學(xué)到了示一組數(shù)據(jù)平均數(shù)的方法 .當數(shù)據(jù)比較小時,可用公式①直接計算 .當數(shù)據(jù)比較大,而且都在某一個數(shù)左右波動時,可選用公式②進行計算 .
八、布置作業(yè)
教材P153中1、2、3、4 .
【初中數(shù)學(xué)教案】相關(guān)文章:
初中數(shù)學(xué)教案02-21
初中數(shù)學(xué)教案[經(jīng)典]02-21
初中數(shù)學(xué)教案模板11-02
角初中數(shù)學(xué)教案12-30
初中趣味數(shù)學(xué)教案02-02
初中數(shù)學(xué)教案《圓》03-05
初中數(shù)學(xué)教案范文02-21
初中數(shù)學(xué)教案【熱】11-17
【熱門】初中數(shù)學(xué)教案11-18
初中數(shù)學(xué)教案【精】11-19