- 相關(guān)推薦
一類三階牛頓變形方法
A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method,are given.Their convergence properties are proved.They are at least third order convergence near simple root and one order convergence near multiple roots.In the end,numerical tests are given and compared with other known Newton's methods.The results show that the proposed methods have some more advantages than others.They enrich the methods to find the roots of non-linear equations and they are important in both theory and application.
作 者: 趙玲玲 王霞 ZHAO Ling-ling WANG Xia 作者單位: Department of Mathematics and Information Science,Zhengzhou Institute of Light Industry,Zhengzhou 450002,China 刊 名: 數(shù)學(xué)季刊(英文版) ISTIC PKU 英文刊名: CHINESE QUARTERLY JOURNAL OF MATHEMATICS 年,卷(期): 2008 23(2) 分類號(hào): O241.7 關(guān)鍵詞: variant Newton'smethods third-order convergence numerical test【一類三階牛頓變形方法】相關(guān)文章:
一類三階雙滯量時(shí)滯微分方程的全局漸近穩(wěn)定性04-26
基于三階累積量的轉(zhuǎn)子振動(dòng)信號(hào)降噪方法研究04-27
牛頓的故事03-12
顧及測(cè)站點(diǎn)變形的數(shù)據(jù)處理方法04-27
一類兩步Runge-Kutta方法的代數(shù)穩(wěn)定性04-26
變分不等式問(wèn)題的一類矩形非協(xié)調(diào)元逼近方法04-26