久久99热66热这里只有精品,特黄特色的大片在线观看,亚洲日本三级在线观看,国产三级农村妇女在线,亚洲av毛片免费在线观看,哺乳叫自慰在线看,天天干美女av网

數(shù)學(xué)分析知識點總結(jié)

時間:2024-07-12 02:33:55 總結(jié) 我要投稿

數(shù)學(xué)分析知識點總結(jié)

  在我們上學(xué)期間,說起知識點,應(yīng)該沒有人不熟悉吧?知識點也可以理解為考試時會涉及到的知識,也就是大綱的分支。掌握知識點有助于大家更好的學(xué)習(xí)。下面是小編整理的數(shù)學(xué)分析知識點總結(jié),僅供參考,歡迎大家閱讀。

數(shù)學(xué)分析知識點總結(jié)

  數(shù)學(xué)分析知識點總結(jié)1

  高中數(shù)學(xué)復(fù)習(xí)的五大要點分析

  一、端正態(tài)度,切忌浮躁,忌急于求成

  在第一輪復(fù)習(xí)的過程中,心浮氣躁是一個非常普遍的現(xiàn)象。主要表現(xiàn)為平時復(fù)習(xí)覺得沒有問題,題目也能做,但是到了考試時就是拿不了高分!這主要是因為:

  (1)對復(fù)習(xí)的知識點缺乏系統(tǒng)的理解,解題時缺乏思維層次結(jié)構(gòu)。第一輪復(fù)習(xí)著重對基礎(chǔ)知識點的挖掘,數(shù)學(xué)老師一定都會反復(fù)強調(diào)基礎(chǔ)的重要性。如果不重視對知識點的系統(tǒng)化分析,不能構(gòu)成一個整體的知識網(wǎng)絡(luò)構(gòu)架,自然在解題時就不能擁有整體的構(gòu)思,也不能深入理解高考典型例題的思維方法。

  (2)復(fù)習(xí)的時候心不靜。心不靜就會導(dǎo)致思維不清晰,而思維不清晰就會促使復(fù)習(xí)沒有效率。建議大家在開始一個學(xué)科的復(fù)習(xí)之前,先靜下心來認真想一想接下來需要復(fù)習(xí)哪一塊兒,需要做多少事情,然后認真去做,同時需要很高的注意力,只有這樣才會有很好的效果。

  (3)在第一輪復(fù)習(xí)階段,學(xué)習(xí)的重心應(yīng)該轉(zhuǎn)移到基礎(chǔ)復(fù)習(xí)上來。

  因此,建議廣大同學(xué)在一輪復(fù)習(xí)的時候千萬不要急于求成,一定要靜下心來,認真的揣摩每個知識點,弄清每一個原理。只有這樣,一輪復(fù)習(xí)才能顯出成效。

  二、注重教材、注重基礎(chǔ),忌盲目做題

  要把書本中的常規(guī)題型做好,所謂做好就是要用最少的時間把題目做對。部分同學(xué)在第一輪復(fù)習(xí)時對基礎(chǔ)題不予以足夠的重視,認為題目看上去會做就可以不加訓(xùn)練,結(jié)果常在一些“不該錯的地方錯了”,最終把原因簡單的歸結(jié)為粗心,從而忽視了對基本概念的掌握,對基本結(jié)論和公式的記憶及基本計算的訓(xùn)練和常規(guī)方法的積累,造成了實際成績與心理感覺的偏差。

  可見,數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識點的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習(xí)的重中之重。不妨以既是重點也是難點的函數(shù)部分為例,就必須掌握函數(shù)的概念,建立函數(shù)關(guān)系式,掌握定義域、值域與最值、奇偶性、單調(diào)性、周期性、對稱性等性質(zhì),學(xué)會利用圖像即數(shù)形結(jié)合。

  三、抓薄弱環(huán)節(jié),做好復(fù)習(xí)的針對性,忌無計劃

  每個同學(xué)在數(shù)學(xué)學(xué)習(xí)上遇到的問題有共同點,更有不同點。在復(fù)習(xí)課上,老師只能針對性去解決共同點,而同學(xué)們自己的個別問題則需要通過自己的思考,與同學(xué)們的討論,并向老師提問來解決問題,我們提倡同學(xué)多問老師,要敢于問。每個同學(xué)必須了解自己掌握了什么,還有哪些問題沒有解決,要明確只有把漏洞一一補上才能提高。復(fù)習(xí)的過程,實質(zhì)就是解決問題的過程,問題解決了,復(fù)習(xí)的效果就實現(xiàn)了。同時,也請同學(xué)們注意:在你問問題之前先經(jīng)過自己思考,不要把不經(jīng)過思考的問題就直接去問,因為這并不能起到更大作用。

  高三的復(fù)習(xí)一定是有計劃、有目標(biāo)的',所以千萬不要盲目做題。第一輪復(fù)習(xí)非常具有針對性,對于所有知識點的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡單做題是達不到一輪復(fù)習(xí)應(yīng)該具有的效果。而且盲目做題沒有針對性,更不會有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對知識點運用方法的總結(jié)。

  四、在平時做題中要養(yǎng)成良好的解題習(xí)慣,忌不思

  1.樹立信心,養(yǎng)成良好的運算習(xí)慣。部分同學(xué)平時學(xué)習(xí)過程中自信心不足,做作業(yè)時免不了互相對答案,也不認真找出錯誤原因并加以改正!皶粚Α笔歉呷龜(shù)學(xué)學(xué)習(xí)的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這就是一種非常不好的習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無窮。可結(jié)合平時解題中存在的具體問題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時作些記錄,也就是錯題本,每位同學(xué)必備的,以便以后查詢。

  2.做好解題后的開拓引申,培養(yǎng)一題多解和舉一反三的能力。解題能力的培養(yǎng)可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對解題方法的開拓引申,即一道數(shù)學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。

  考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對題目做開拓引申,引申出新題和新解法,有利于培養(yǎng)同學(xué)們的發(fā)散思維,激發(fā)創(chuàng)造精神,提高解題能力:

  (1)把題目條件開拓引申。

  ①把特殊條件一般化;②把一般條件特殊化;③把特殊條件和一般條件交替變化。

  (2)把題目結(jié)論開拓引申。

  (3)把題型開拓引申,同一個題目,給出不同的提法,可以變成不同的題型。俗稱為“一題多變”但其解法仍類似,按其解法而言,這些題又可稱為“多題一解”或“一法多用”。

  3.提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡捷;二是對常規(guī)解法的掌握是否達到高度的熟練程度。

  五、學(xué)會總結(jié)、歸納,訓(xùn)練到位,忌題量不足

  我在暑期上課的時候發(fā)現(xiàn),很多同學(xué)都是一看到題目就開始做題,這也是一輪復(fù)習(xí)應(yīng)該避免的地方。做題如果不注重思路的分析,知識點的運用,效果可想而知。因此建議同學(xué)們在做題前要把老師上課時復(fù)習(xí)的知識再回顧一下,梳理知識體系,回顧各個知識點,對所學(xué)的知識結(jié)構(gòu)要有一個完整清楚的認識,認真分析題目考查的知識,思想,以及方法,還要學(xué)會總結(jié)歸納不留下任何知識的盲點,在一輪復(fù)習(xí)中要注意對各個知識點的細化。這個過程不需要很長的時間,而且到了后續(xù)階段會越來越熟練。因此,養(yǎng)成良好的做題習(xí)慣,有助于訓(xùn)練自己的解題思維,提高自己的解題能力。

  實踐出真知,充足的題量是把理論轉(zhuǎn)化為能力的一種保障,在足夠的題目的練習(xí)下不僅可以更扎實的掌握知識點,還可以更深入的了解知識點,避免出現(xiàn)“會而不對、對而不全”的現(xiàn)象。由于高考依然是以做題為主,所以解題能力是高考分數(shù)的一個直接反映,尤其是數(shù)學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復(fù)的訓(xùn)練、認真細致的推敲才會有較大的提升。有句話說的好,“量變導(dǎo)致質(zhì)變”,因此,同學(xué)們在每章復(fù)習(xí)的時候,一定要做足夠的題,才能夠充分的理解這一章的內(nèi)容,才能夠做到對這一章知識點的熟練運用。

  但是,大量訓(xùn)練絕對不是題海戰(zhàn)術(shù)。因為針對每章節(jié)做題都有目標(biāo),同時做題訓(xùn)練都需要不斷的總結(jié),既要橫向總結(jié),也要縱向深入。只要在每章節(jié)做題做到一定程度的時候都能感覺到這一章的知識點有哪些,典型題型有哪些,方法和技巧有哪些,換句話說,如果隨機抽取一些近幾年關(guān)于這一章的高考題都會做,那我認為就可以了。

  高中數(shù)學(xué)知識點歸納

  1.必修課程由5個模塊組成:

  必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對數(shù)函數(shù))

  必修2:立體幾何初步、平面解析幾何初步。

  必修3:算法初步、統(tǒng)計、概率。

  必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

  必修5:解三角形、數(shù)列、不等式。

  以上所有的知識點是所有高中生必須掌握的,而且要懂得運用。

  選修課程分為4個系列:

  系列1:2個模塊

  選修1-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。

  選修1-2:統(tǒng)計案例、推理與證明、數(shù)系的擴充與復(fù)數(shù)、框圖

  系列2:3個模塊

  選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何

  選修2-2:導(dǎo)數(shù)及其應(yīng)用、推理與證明、數(shù)系的擴充與復(fù)數(shù)

  選修2-3:計數(shù)原理、隨機變量及其分布列、統(tǒng)計案例

  選修4-1:幾何證明選講

  選修4-4:坐標(biāo)系與參數(shù)方程

  選修4-5:不等式選講

  2.重難點及其考點:

  重點:函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)

  難點:函數(shù),圓錐曲線

  高考相關(guān)考點:

  1.集合與邏輯:集合的邏輯與運算(一般出現(xiàn)在高考卷的第一道選擇題)、簡易邏輯、充要條件

  2.函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)、函數(shù)的應(yīng)用

  3.數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項、求和

  4.三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用

  5.平面向量:初等運算、坐標(biāo)運算、數(shù)量積及其應(yīng)用

  6.不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用

  7.直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

  8.圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用

  9.直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

  10.排列、組合和概率:排列、組合應(yīng)用題、二項式定理及其應(yīng)用

  11.概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布

  12.導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

  13.復(fù)數(shù):復(fù)數(shù)的概念與運算

  高三數(shù)學(xué)重要知識點總結(jié)

  考點一:集合與簡易邏輯

  集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關(guān)系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數(shù)學(xué)解題過程和邏輯推理。

  考點二:函數(shù)與導(dǎo)數(shù)

  函數(shù)是高考的重點內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題。

  考點三:三角函數(shù)與平面向量

  一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點”題型.

  考點四:數(shù)列與不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會在小題中設(shè)置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目.

  考點五:立體幾何與空間向量

  一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。

  考點六:解析幾何

  一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。

  考點七:算法復(fù)數(shù)推理與證明

  高考對算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點是流程圖的識別與算法語言的閱讀理解.算法與數(shù)列知識的網(wǎng)絡(luò)交匯命題是考查的主流.復(fù)數(shù)考查的重點是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數(shù)學(xué)歸納法可能作為解答題的一小問.

  數(shù)學(xué)分析知識點總結(jié)2

  1、正數(shù)和負數(shù)的有關(guān)概念

  (1)正數(shù):比0大的數(shù)叫做正數(shù);

  負數(shù):比0小的數(shù)叫做負數(shù);

  0既不是正數(shù),也不是負數(shù)。

  (2)正數(shù)和負數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關(guān)數(shù)軸

  (1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直線。

  (2)所有有理數(shù)都可以用數(shù)軸上的點來表示,但數(shù)軸上的點不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點在原點的右側(cè),表示負數(shù)的點在原點的左側(cè)。

  (2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負數(shù),負數(shù)的相反數(shù)是正數(shù)。

  (3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負數(shù)。

  4、任何數(shù)的絕對值是非負數(shù)。

  最小的正整數(shù)是1,最大的負整數(shù)是-1。

  5、利用絕對值比較大小

  兩個正數(shù)比較:絕對值大的那個數(shù)大;

  兩個負數(shù)比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數(shù)加法

  (1)符號相同的兩數(shù)相加:和的符號與兩個加數(shù)的符號一致,和的絕對值等于兩個加數(shù)絕對值之和.

  (2)符號相反的'兩數(shù)相加:當(dāng)兩個加數(shù)絕對值不等時,和的符號與絕對值較大的加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當(dāng)兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零.

  (3)一個數(shù)同零相加,仍得這個數(shù).

  加法的交換律:a+b=b+a

  加法的結(jié)合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運算統(tǒng)一為最簡的形式,負數(shù)前面的加號可以省略不寫.

  例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”

  9、有理數(shù)的乘法

  兩個數(shù)相乘,同號得正,異號得負,再把絕對值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號 第二步:絕對值相乘

  10、乘積的符號的確定

  幾個有理數(shù)相乘,因數(shù)都不為 0 時,積的符號由負因數(shù)的個數(shù)確定:當(dāng)負因數(shù)有奇數(shù)個時,積為負;

  當(dāng)負因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。

  11、倒數(shù):乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)

  倒數(shù)是本身的只有1和-1。

  數(shù)學(xué)分析知識點總結(jié)3

  1.數(shù)列的定義

  按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.

  (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

  (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….

  (4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當(dāng)于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當(dāng)于f(n)中的n.

  (5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的.區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

  2.數(shù)列的分類

  (1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.

  (2)按照項與項之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.

  3.數(shù)列的通項公式

  數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,

  這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非.如:數(shù)列1,2,3,4。

  數(shù)學(xué)分析知識點總結(jié)4

  一、基本知識

  一、數(shù)與代數(shù)

  A、數(shù)與式:

  1、有理數(shù):①整數(shù)→正整數(shù),0,負整數(shù);

 、诜謹(shù)→正分數(shù),負分數(shù)

  數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。

 、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

 、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。

 、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  絕對值:①在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。

 、谡龜(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:帶上符號進行正常運算。

  加法:

 、偻栂嗉樱∠嗤姆,把絕對值相加。

 、诋愄栂嗉,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。

  ②任何數(shù)與0相乘得0。

 、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。

  除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。

 、0不能作除數(shù)。

  乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數(shù)

  無理數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù),例如:π=3.1415926…

  平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。

  ②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。

 、垡粋正數(shù)有2個平方根;0的平方根為0;負數(shù)沒有平方根。

 、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

 、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。

 、矍笠粋數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。

 、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣;

 、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項;②把同類項合并成一項就叫做合并同類項。

 、墼诤喜⑼愴棔r,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

  ②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

 、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:

  A^M+A^N=A^(M+N)

 。ˋ^M)^N=A^(MN

 。

 。ˋ/B)^N=A^N/B^N

  除法一樣。

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

  ②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

  ③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);

  完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

  整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

 、诙囗検匠詥雾検剑劝堰@個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:①同分母分式相加減,分母不變,把分子相加減。

 、诋惙帜傅姆质较韧ǚ郑癁橥帜傅姆质,再加減。

  分式方程:①分母中含有未知數(shù)的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱為原方程的增根。

  B、方程與不等式

  1、方程與方程組

  一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

  ②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的'方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

  適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

  解二元一次方程組的方法:代入消元法;加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程:ax^2+bx+c=0;

  1)一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當(dāng)Y=0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖像與X軸的交點。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(-b/2a

  ,4ac-b^2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

  (3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

  3)解一元二次方程的步驟:

  (1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

  (3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c

  4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

  5)一元二次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao

  ta”,而△=b2-4ac,這里可以分為3種情況:

  I當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根;

  II當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根;

  III當(dāng)△B,則A+C>B+C;

  在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;

  例如:如果A>B,則A-C>B-C;

  在不等式中,如果乘以同一個正數(shù),不等式符號不改向;

  例如:如果A>B,則A*C>B*C(C>0);

  在不等式中,如果乘以同一個負數(shù),不等號改向;

  例如:如果A>B,則A*C

  如果不等式乘以0,那么不等號改為等號;

  所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;

  3、函數(shù)

  變量:因變量Y,自變量X。

  在用圖像表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

  一次函數(shù):①若兩個變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

 、诋(dāng)B=0時,稱Y是X的正比例函數(shù)。

  一次函數(shù)的圖像:

 、侔岩粋函數(shù)的自變量X與對應(yīng)的因變量Y的值分別作為點的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖像。

  ②正比例函數(shù)Y=KX的圖像是經(jīng)過原點的一條直線。

 、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O時,則經(jīng)234象限;

  當(dāng)K〈0,B〉0時,則經(jīng)124象限;

  當(dāng)K〉0,B〈0時,則經(jīng)134象限;

  當(dāng)K〉0,B〉0時,則經(jīng)123象限。

 、墚(dāng)K〉0時,Y的值隨X值的增大而增大,當(dāng)X〈0時,Y的值隨X值的增大而減少。

  二空間與圖形

  A、圖形的認識

  1、點,線,面

  點,線,面:①圖形是由點,線,面構(gòu)成的。

 、诿媾c面相交得線,線與線相交得點。

 、埸c動成線,線動成面,面動成體。

  展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。

 、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧、扇形:①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個扇形。

  2、角

  線:①線段有兩個端點。

  ②將線段向一個方向無限延長就形成了射線。射線只有一個端點。

 、蹖⒕段的兩端無限延長就形成了直線。直線沒有端點。

  ④經(jīng)過兩點有且只有一條直線。

  比較長短:①兩點之間的所有連線中,線段最短。兩點之間直線最短。

 、趦牲c之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

 、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

  角的比較:①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。

  ②一條射線繞著他的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所成的角叫做平角,180。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時,所成的角叫做周角,360。

 、蹚囊粋角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。

 、诮(jīng)過直線外一點,有且只有一條直線與這條直線平行。

 、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。

 、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。

 、燮矫鎯(nèi),過一點有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;

  判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;

  角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的集合。

  性質(zhì)定理:角平分線上的點到該角兩邊的距離相等;

  判定定理:到角的兩邊距離相等的點在該角的角平分線上;

  正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

  判定:1、對角線相等的菱形2、鄰邊相等的矩形

  二、基本定理

  1、過兩點有且只有一條直線

  2、兩點之間線段最短

  3、同角或等角的補角相等

  ——補角=180-角度。

  4、同角或等角的余角相等——余角=90-角度。

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯角相等,兩直線平行

  11、同旁內(nèi)角互補,兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯角相等

  14、兩直線平行,同旁內(nèi)角互補

  15、定理

  三角形兩邊的和大于第三邊

  16、推論

  三角形兩邊的差小于第三邊

  17、三角形內(nèi)角和定理:

  三角形三個內(nèi)角的和等于180°

  18、推論1

  直角三角形的兩個銳角互余

  19、推論2

  三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

  20、推論3

  三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

  21、全等三角形的對應(yīng)邊、對應(yīng)角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

  23、角邊角公理(

  ASA):有兩角和它們的夾邊對應(yīng)相等的

  兩個三角形全等

  24、推論(AAS):有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

  25、邊邊邊公理(SSS):有三邊對應(yīng)相等的兩個三角形全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

  27、定理1

  在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2

  到一個角的兩邊的距離相同的點,在這個角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、推論1

  等腰三角形頂角的平分線平分底邊并且垂直于底邊

  31、推論2等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

  32、推論3

  等邊三角形的各角都相等,并且每一個角都等于60°

  33、等腰三角形的判定定理

  如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  34、等腰三角形的性質(zhì)定理

  等腰三角形的兩個底角相等

  (即等邊對等角)

  35、推論1

  三個角都相等的三角形是等邊三角形

  36、推論

  有一個角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線等于斜邊上的一半

  39、定理

  線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理

  和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42、定理1

  關(guān)于某條直線對稱的兩個圖形是全等形

  43、定理

  如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

  44、定理3

  兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

  45、逆定理

  如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  46、勾股定理

  直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理

  如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形

  48、定理

  四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理

  n邊形的內(nèi)角的和等于(n-2)×180°

  51、推論

  任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1

  平行四邊形的對角相等

  53、平行四邊形性質(zhì)定理2

  平行四邊形的對邊相等

  54、推論

  夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3

  平行四邊形的對角線互相平分

  56、平行四邊形判定定理1

  兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2

  兩組對邊分別相等的四邊

  形是平行四邊形

  58、平行四邊形判定定理3

  對角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4

  一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1

  矩形的四個角都是直角

  61、矩形性質(zhì)定理2

  矩形的對角線相等

  62、矩形判定定理1

  有三個角是直角的四邊形是矩形

  63、矩形判定定理2

  對角線相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1

  菱形的四條邊都相等

  65、菱形性質(zhì)定理2

  菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1

  四邊都相等的四邊形是菱形

  68、菱形判定定理2

  對角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1

  正方形的四個角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71、定理1

  關(guān)于中心對稱的兩個圖形是全等的

  72、定理2

  關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  73、逆定理

  如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

  74、等腰梯形性質(zhì)定理

  等腰梯形在同一底上的兩個角相等

  75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理

  在同一底上的兩個角相等的梯

  形是等腰梯形

  77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理

  如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1

  經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2

  經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  81、三角形中位線定理

  三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理

  梯形的中位線平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2

  S=L×h

  83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc

  如果

  ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理

  三條平行線截兩條直線,所得的對應(yīng)線段成比例

  87、推論

  平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88、定理

  如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,

  所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  90、定理

  平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91、相似三角形判定定理1

  兩角對應(yīng)相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  93、判定定理2

  兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  94、判定定理3

  三邊對應(yīng)成比例,兩三角形相似(SSS)

  95、定理

  如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似(HL)

  96、性質(zhì)定理1

  相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

  97、性質(zhì)定理2

  相似三角形周長的比等于相似比

  98、性質(zhì)定理3

  相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

  (a<90)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

  101、圓是定點的距離等于定長的點的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點的集合

  104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理

  不在同一直線上的三點確定一個圓。

  110、垂徑定理

  垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙遥⑶移椒窒宜鶎Φ膬蓷l弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條。ㄖ睆剑

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116、定理

  一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1

  同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118、推論2

  半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3

  如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  120、定理

  圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

  121、①直線L和⊙O相交

  0<=d<r

 、谥本L和⊙O相切

  d=r

 、壑本L和⊙O相離

  d>r

  122、切線的判定定理

  經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質(zhì)定理

  圓的切線垂直于經(jīng)過切點的半徑

  124、推論1

  經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  125、推論2

  經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  126、切線長定理

  從圓外一點引圓的兩條切線相交與一點,它們的切線長相等

  ,圓心和這一點的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對的圓周角?

  129、推論

  如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130、相交弦定理

  圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132、切割線定理

  從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?

  133、推論

  從圓外一點引圓的兩條割線,這一點到每條

  割線與圓的交點的兩條線段長的積相等

  134、如果兩個圓相切,那么切點一定在連心線上

  135、①兩圓外離

  d>R+r

  ②兩圓外切

  d=R+r

 、蹆蓤A相交

  R-r<d<R+r(R>r)

 、軆蓤A內(nèi)切

  d=R-r(R>r)

 、輧蓤A內(nèi)含

  d<R-r(R>r)

  136、定理

  相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

  ⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

 、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138、定理

  任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  139、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  141、正n邊形的面積Sn=pn*rn/2

  p表示正n邊形的周長

  142、正三角形面積√3a^2/4

  a表示邊長

  143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長計算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內(nèi)公切線長=d-(R-r)

  外公切線長=d-(R+r)

  數(shù)學(xué)分析知識點總結(jié)5

  等式的性質(zhì):

  ①不等式的性質(zhì)可分為不等式基本性質(zhì)和不等式運算性質(zhì)兩部分。

  不等式基本性質(zhì)有:

  (1)a>bb

  (2)a>b,b>ca>c(傳遞性)

  (3)a>ba+c>b+c(c∈R)

  (4)c>0時,a>bac>bc

  c<0時,a>bac

  運算性質(zhì)有:

  (1)a>b,c>da+c>b+d。

  (2)a>b>0,c>d>0ac>bd。

  (3)a>b>0an>bn(n∈N,n>1)。

  (4)a>b>0>(n∈N,n>1)。

  應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:“”和“”即推出關(guān)系和等價關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。

 、陉P(guān)于不等式的性質(zhì)的考察,主要有以下三類問題:

  (1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。

  (2)利用不等式的性質(zhì)及實數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實數(shù)值的大小。

  (3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。

  高中數(shù)學(xué)集合復(fù)習(xí)知識點

  任一A,B,記做AB

  AB,BA ,A=B

  AB={|A|,且|B|}

  AB={|A|,或|B|}

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

  (2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1.集合元素具有①確定性;②互異性;③無序性

  2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

  (3)集合的運算

 、貯∩(B∪C)=(A∩B)∪(A∩C)

  ②Cu(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性質(zhì)

  n元集合的字集數(shù):2n

  真子集數(shù):2n-1;

  非空真子集數(shù):2n-2

  高中數(shù)學(xué)集合知識點歸納

  1、集合的概念

  集合是數(shù)學(xué)中最原始的不定義的'概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。

  集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。

  2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:

  元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

  3、集合中元素的特性

  (1)確定性:設(shè)A是一個給定的集合,_是某一具體對象,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

  (2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。

  (3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個集合。

  4、集合的分類

  集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:

  有限集:含有有限個元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。

  無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。

  特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{|R|+1=0}。

  5、特定的集合的表示

  為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。

  (1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記做N。

  (2)非負整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。

  (3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。

  (4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。

  (5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做R。

  數(shù)學(xué)分析知識點總結(jié)6

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

  2、集合的中元素的三個特性:

  1.元素的確定性;

  2.元素的互異性;

  3.元素的無序性

  說明:

  (1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

  (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的.三個特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法。

  注意。撼S脭(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

  關(guān)于“屬于”的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

  ①語言描述法:例:{不是直角三角形的三角形}

 、跀(shù)學(xué)式子描述法:例:不等式_-3>2的解集是{_?R_-3>2}或{__-3>2}

  4、集合的分類:

  1.有限集含有有限個元素的集合

  2.無限集含有無限個元素的集合

  3.空集不含任何元素的集合例:{__2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實例:設(shè)A={__2-1=0}B={-1,1}“元素相同”

  結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

 、偃魏我粋集合是它本身的子集。AíA

 、谡孀蛹:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄íB,BíC,那么AíC

 、苋绻鸄íB同時BíA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集

  反比例函數(shù)

  形如y=k/_(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

  自變量_的取值范圍是不等于0的一切實數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(-_)=-f(_),圖像關(guān)于原點對稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

  如圖,上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。

  當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

  當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

  知識點:

  1.過反比例函數(shù)圖象上任意一點作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

  2.對于雙曲線y=k/_,若在分母上加減任意一個實數(shù)(即y=k/(_±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

  銳角三角函數(shù)公式

  sinα=∠α的對邊/斜邊

  cosα=∠α的鄰邊/斜邊

  tanα=∠α的對邊/∠α的鄰邊

  cotα=∠α的鄰邊/∠α的對邊

  數(shù)學(xué)中什么叫棱

  物體上的條狀突起,或不同方向的兩個平面相連接的部分。棱柱是幾何學(xué)中的一種常見的三維多面體,指上下底面平行且全等,側(cè)棱平行且相等的封閉幾何體。在正方體和長方體中,具有12個棱長,且棱長在不同的幾何體中有不同的特點。

【數(shù)學(xué)分析知識點總結(jié)】相關(guān)文章:

數(shù)學(xué)分析最全知識點總結(jié)12-25

語文知識點總結(jié)12-23

物理知識點總結(jié)05-09

傳記知識點總結(jié)07-26

物理知識點總結(jié)08-22

小升初英語知識點總結(jié)06-24

聲現(xiàn)象知識點總結(jié)04-24

初中物理知識點總結(jié)10-11

生物下冊知識點總結(jié)05-19

馬原知識點總結(jié)06-13