- 相關(guān)推薦
《乘法分配律》教學(xué)后反思
《乘法分配律》教學(xué)后反思1
乘法分配律是一節(jié)比較抽象的概念課,教師可以根據(jù)教學(xué)內(nèi)容的特點(diǎn),為學(xué)生提供多種探究方法,激發(fā)學(xué)生的自主意識(shí)。
具體是這樣設(shè)計(jì)的:先創(chuàng)設(shè)佳樂超市的情景調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,通過買“3套運(yùn)動(dòng)服,每件上衣21元,每條褲子10元,一共花多少元?”列出兩種不同的式子,他們確實(shí)能夠體會(huì)到兩個(gè)不同的算式具有相等的關(guān)系。這是第一步:通過資料獲取繼續(xù)研究的信息。(雖然所得的信息很簡單,只是幾組具有相等關(guān)系的`算式,但這是學(xué)生通過活動(dòng)自己獲取的,學(xué)生對于它們感到熟悉和親切,用他們作為繼續(xù)研究的對象,能夠調(diào)動(dòng)學(xué)生的參與意識(shí)。)
第二步:觀察算式,尋找規(guī)律。讓學(xué)生通過討論初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個(gè)算式都是相等的?此時(shí),教師不要急于告訴學(xué)生答案,而是讓學(xué)生自己通過舉例加以驗(yàn)證。這里既培養(yǎng)了學(xué)生的猜測能力,又培養(yǎng)了學(xué)生驗(yàn)證猜測的能力。
第三步:應(yīng)用規(guī)律,解決實(shí)際問題。通過對于實(shí)際問題的解決,進(jìn)一步拓寬乘法分配律。這一階段,既是學(xué)生鞏固和擴(kuò)大知識(shí),又是吸收內(nèi)化知識(shí)的階段,同時(shí)還是開發(fā)學(xué)生創(chuàng)新思維的重要階段。
《乘法分配律》教學(xué)后反思2
《乘法分配律》一課是四年級上冊第四單元的教學(xué)內(nèi)容,它相對于加法交換律、結(jié)合律,乘法交換律和結(jié)合律來說會(huì)比較抽象,學(xué)生較難于理解。因此把本課的教學(xué)重點(diǎn)定位為“探索并發(fā)現(xiàn)乘法分配律,理解乘法分配律的意義”,讓學(xué)生經(jīng)歷“觀察算式——仿寫算式——解釋規(guī)律——應(yīng)用規(guī)律”的過程。
一、比賽導(dǎo)入 激發(fā)探究欲望
課前創(chuàng)設(shè)比賽情境:老師能很快說出下面幾道題的得數(shù),你信嗎?不信的同學(xué)敢跟我比一比嗎?(出示: 28×70+72×70 (125+10)×8 34×101)在我既對又快的說出結(jié)果時(shí),孩子們都很驚訝,于是我因勢利導(dǎo):剛才的比賽老師算得快,是因?yàn)槔蠋熡幸粋(gè)取勝的秘訣,它可以使計(jì)算簡便,你們想知道嗎?學(xué)完這節(jié)課,你就能發(fā)現(xiàn)其中的秘密。學(xué)生個(gè)個(gè)躍躍欲試,瞬間充滿探究的欲望,很好地激發(fā)了學(xué)生學(xué)習(xí)的興趣。
二、自主探索 發(fā)現(xiàn)規(guī)律
在解決“一共貼了多少塊磁磚?”中,學(xué)生列出了四個(gè)算式:3×10+5×10、4×8+6×8、(3+5)×10、(4+6)×8后,在讓學(xué)生觀察四個(gè)算式之后,先引導(dǎo)學(xué)生將四個(gè)算式進(jìn)行分類并說明分類的標(biāo)準(zhǔn)。通過這個(gè)環(huán)節(jié),學(xué)生對于相等的兩個(gè)算式的特征有了進(jìn)一步的了解,知道將3×10+5×10和(3+5)×10分為一類,將4×8+6×8和(4+6)×8分為一類,是因?yàn)樗鼈兊臄?shù)字都一樣,都是由3、5、10組成或是由4、6、8組成的,了解乘法分配律中有3個(gè)數(shù);如將3×10+5×10和將4×8+6×8分一類,將(3+5)×10和(4+6)×8分為一類的`,則從中明白一邊都是兩個(gè)積相加,另一邊則是兩個(gè)數(shù)的和與一個(gè)數(shù)相乘。通過這個(gè)分類活動(dòng),讓學(xué)生自主發(fā)現(xiàn)規(guī)律,為理解乘法分配律做了很好的鋪墊。接著再讓學(xué)生仿寫算式,總結(jié)規(guī)律并解釋規(guī)律,最后再應(yīng)用規(guī)律揭示課前比賽中老師獲勝的奧秘。
三、錯(cuò)因分析 防患未然
以往的教學(xué)經(jīng)驗(yàn)告訴我,學(xué)生對于乘法分配律的運(yùn)用經(jīng)常出錯(cuò),也很容易與結(jié)合律混在一起。為了防患于未然,在教學(xué)中創(chuàng)設(shè)了“小馬虎這樣做,你同意嗎?
(1)(6+30)×7 = 7×6+7×30
(2) 25×(4+60)= 25×4+60
(3) 16×5×8 = 16×5+16×8
(4) 15×3+15×7 = (15+15)×(3+7)”讓學(xué)生進(jìn)行分析、判斷并修正。特別是第3題,讓學(xué)生對比乘法分配律和乘法結(jié)合律的數(shù)學(xué)模型,找出其中的區(qū)別,加以比較,從而發(fā)現(xiàn)模型左邊乘法結(jié)合律是兩個(gè)數(shù)的積,而乘法分配律是兩個(gè)數(shù)的和,而模型右邊乘法結(jié)合律是連乘的形式,而乘法分配律是兩個(gè)積相加的形式。這樣對比,加深對乘法分配律模型的認(rèn)識(shí)和對其意義的理解。分析錯(cuò)因后,還不忘讓學(xué)生說說:“你想對小馬虎說什么?”來提醒告誡學(xué)生,除了要養(yǎng)成認(rèn)真細(xì)心的習(xí)慣外,還要運(yùn)用好乘法分配律,注意分配律與結(jié)合律的區(qū)別,將錯(cuò)誤扼制在搖籃里。
不足之處:雖然學(xué)生對于乘法分配律的理解比較到位,較好地達(dá)成了教學(xué)目標(biāo),但如能進(jìn)行適時(shí)拓展,讓學(xué)生通過“兩個(gè)數(shù)的和與一個(gè)數(shù)相乘來聯(lián)想到兩個(gè)數(shù)的差與一個(gè)數(shù)相乘,兩個(gè)數(shù)的和除以一個(gè)數(shù)及兩個(gè)數(shù)的差除以一個(gè)數(shù)是否都可以應(yīng)用乘法分配律這個(gè)數(shù)學(xué)模型?”會(huì)使課堂更豐滿,更有深度。
【《乘法分配律》教學(xué)后反思】相關(guān)文章:
《乘法分配律》教后反思02-29
教學(xué)反思《乘法的分配律》05-06
《乘法分配律》教學(xué)反思07-01
乘法分配律教學(xué)反思05-02
乘法分配律教學(xué)反思04-13
《乘法分配律》教學(xué)反思范文04-27
乘法的分配律教學(xué)反思范文05-04
乘法分配律教學(xué)案例與反思04-28