久久99热66热这里只有精品,特黄特色的大片在线观看,亚洲日本三级在线观看,国产三级农村妇女在线,亚洲av毛片免费在线观看,哺乳叫自慰在线看,天天干美女av网

《反比例》數(shù)學(xué)教案

時(shí)間:2024-10-05 21:45:30 數(shù)學(xué)教案 我要投稿

《反比例》數(shù)學(xué)教案

  在教學(xué)工作者開展教學(xué)活動(dòng)前,通常會(huì)被要求編寫教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。來參考自己需要的教案吧!下面是小編整理的《反比例》數(shù)學(xué)教案,僅供參考,大家一起來看看吧。

《反比例》數(shù)學(xué)教案

《反比例》數(shù)學(xué)教案1

  教學(xué)內(nèi)容

  反比例。(教材第47頁(yè)例2)。

  教學(xué)目標(biāo)

  1.使學(xué)生理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。

  2.讓學(xué)生經(jīng)歷反比例意義的探究過程,體驗(yàn)觀察比較、推理、歸納的學(xué)習(xí)方法。

  重點(diǎn)難點(diǎn)

  引導(dǎo)學(xué)生總結(jié)出成反比例的量的特點(diǎn),進(jìn)而抽象概括出反比例的關(guān)系式。利用反比例的意義,正確判斷兩個(gè)量是否成反比例。

  教學(xué)準(zhǔn)備

  投影儀。

  復(fù)習(xí)導(dǎo)入

  1.讓學(xué)生說說什么是正比例,然后用投影出示下面的題。

  下面各題中哪兩種量成正比例?為什么?

 。1)每公頃產(chǎn)量一定,總產(chǎn)量和公頃數(shù)。

 。2)一袋大米的重量一定,吃了的和剩下的。

 。3)修房屋時(shí),粉刷的面積和所需涂料的數(shù)量。

  2.說出每小時(shí)加工零件數(shù)、加工零件總數(shù)和加工時(shí)間三者之間的關(guān)系。在什么條件下,其中兩種量成正比例?

  教師:如果加工零件總數(shù)一定,每小時(shí)加工數(shù)和加工時(shí)間會(huì)成什么變化?關(guān)系怎樣?這就是我們這節(jié)課要學(xué)習(xí)的內(nèi)容。

  新課講授

  1.教學(xué)例2。

  創(chuàng)設(shè)情境。

  教師:把相同體積的水倒入底面積不同的杯子,高度會(huì)怎樣變化?

  出示教材第47頁(yè)例2的情境圖和表格。

  請(qǐng)學(xué)生認(rèn)真觀察表中數(shù)據(jù)的變化情況,組織學(xué)生分小組討論:

 。1)水的高度和底面積變化有關(guān)系嗎?

 。2)水的高度是怎樣隨著底面積變化的?

  (3)水的高度和底面積的變化有什么規(guī)律?

  學(xué)生不難發(fā)現(xiàn):底面積越大,水的高度越低;底面積越小,水的高度越高,而且高度和底面積的乘積(水的體積)一定。

  教師板書配合說明這一規(guī)律:

  30×10=20×15=15×20=……=300

  教師根據(jù)學(xué)生的匯報(bào)說明:高度和底面積有這樣的變化關(guān)系,我們就說高度和底面積成反比例的關(guān)系,高度和底面積叫做成反比例的量。

  2.歸納反比例的意義。

  組織學(xué)生小組內(nèi)討論:反比例的意義是什么?

  學(xué)生小組內(nèi)交流,指名匯報(bào)。

  教師總結(jié):像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。

  3.用字母表示。

  如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積(一定),反比例關(guān)系的式子怎么表示?

  學(xué)生探討后得出結(jié)果。

  x×y=k(一定)

  4.師:生活中還有哪些成反比例的量?

  在教師的引導(dǎo)下,學(xué)生舉例說明。如:

  (1)大米的質(zhì)量一定,每袋質(zhì)量和袋數(shù)成反比例。

 。2)教室地板面積一定,每塊地磚的面積和塊數(shù)成反比例。

 。3)長(zhǎng)方形的面積一定,長(zhǎng)和寬成反比例。

  5.組織學(xué)生將例1與例2進(jìn)行比較,小組內(nèi)討論:

  正比例與反比例的相同點(diǎn)和不同點(diǎn)有哪些?

  學(xué)生交流、匯報(bào)后,引導(dǎo)學(xué)生歸納:

  相同點(diǎn):都表示兩種相關(guān)聯(lián)的量,且一種量變化,另一種量也隨著變化。

  不同點(diǎn):正比例關(guān)系中比值一定,反比例關(guān)系中乘積一定。

  6.你還有什么疑問

 ?如果學(xué)生提出表示反比例關(guān)系的圖像有什么特征,教師應(yīng)該引導(dǎo)學(xué)生觀察教材第48頁(yè)“你知道嗎?”中的圖像。

  反比例關(guān)系也可以用圖像來表示,表示兩個(gè)量的'點(diǎn)不在同一條直線上,點(diǎn)所連接起來的圖像是一條曲線,圖像特征不要求掌握。

  課堂作業(yè)

  1.教材第48頁(yè)的“做一做”。

  2.教材第51頁(yè)第9、10題。

  答案:1.(1)每天運(yùn)的噸數(shù)和所需的天數(shù)兩種量,它們是相關(guān)聯(lián)的量。

  (2)300×1=150×2=100×3=300(答案不唯一),積都是300。積表示貨物的總量。

  (3)成反比例,因?yàn)槊刻爝\(yùn)的噸數(shù)變化,需要的天數(shù)也隨著變化,且它們的積一定。

  2.第9題:成反比例,因?yàn)槊科康娜萘颗c瓶數(shù)的乘積一定。

  第10題:5010012

  課堂小結(jié)

  說一說成反比例關(guān)系的量的變化特征。

  課后作業(yè)

  1.完成練習(xí)冊(cè)中本課時(shí)的練習(xí)。

  2.教材51~52頁(yè)第8、14題。

  答案:

  2.第8題:成反比例,因?yàn)榻淌业拿娣e一定,而每塊地磚的面積與所需數(shù)量的乘積都等于教室的面積54m2。

  第14題:(1)斑馬和長(zhǎng)頸鹿的奔跑路程和奔跑時(shí)間成正比例。

 。2)分析:可以通過圖像直接估計(jì),先在橫軸上找到18分的位置,然后在兩個(gè)圖像中找到相應(yīng)的點(diǎn),再分別在豎軸上找到與這個(gè)點(diǎn)對(duì)應(yīng)的數(shù)值;也可以通過計(jì)算找到。

  解答:從圖像中可以知道斑馬10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。

  從圖像中可以知道長(zhǎng)頸鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。

 。3)斑馬跑得快。

  第3課時(shí)反比例

  兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。

  用x和y表示兩種相關(guān)聯(lián)的量,x和y成反比例關(guān)系用字母表示為×y=k(一定)

  正比例與反比例的相同點(diǎn)和不同點(diǎn):

  相同點(diǎn):都表示兩種相關(guān)聯(lián)的量,且一種量變化,另一種量也隨著變化。

  不同點(diǎn):正比例關(guān)系中比值一定,反比例關(guān)系中乘積一定。

《反比例》數(shù)學(xué)教案2

  教學(xué)目標(biāo)

  1.使學(xué)生理解正、反比例的意義,能夠初步判斷兩種相關(guān)聯(lián)的量是否成比例,成什么比例.

  2.通過觀察、比較、歸納,提高學(xué)生綜合概括推理的能力.

  3.滲透辯證唯物主義的觀點(diǎn),進(jìn)行運(yùn)用變化觀點(diǎn)的啟蒙教育.

  教學(xué)重難點(diǎn)

  理解正反比例的意義,掌握正反比例的變化的規(guī)律.

  教學(xué)過程

  一、導(dǎo)入新課

 。ㄒ唬┳蛱炖蠋熧I了一些蘋果,吃了一部分,你能想到什么?

 。ǘ┙處熖釂

  1.你為什么馬上能想到還剩多少呢?

  2.是不是因?yàn)槌粤说暮褪O碌氖莾煞N相關(guān)聯(lián)的量?

  教師板書:兩種相關(guān)聯(lián)的量

 。ㄈ┙處熣勗

  在實(shí)際生活中兩種相關(guān)的量是很多的,例如總價(jià)和單價(jià)是兩種相關(guān)聯(lián)的量,總價(jià)和

  數(shù)量也是兩種相關(guān)聯(lián)的'量.你還能舉出一些例子嗎?

  二、新授教學(xué)

 。ㄒ唬┏烧壤牧

  例1.一列火車行駛的時(shí)間和所行的路程如下表:

  時(shí)間(時(shí)):路程(千米)

  1 :90

  2 :180

  3 :270

  4 :360

  5 :450

  6 :540

  7 :630

  8 :720

  1.寫出路程和時(shí)間的比并計(jì)算比值.

  (1) 2表示什么?180呢?比值呢?

 。2) 這個(gè)比值表示什么意義?

 。3) 360比5可以嗎?為什么?

  2.思考

  (1)180千米對(duì)應(yīng)的時(shí)間是多少?4小時(shí)對(duì)應(yīng)的路程又是多少?

  (2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?

  教師板書:時(shí)間、路程、速度

 。3)速度是怎樣得到的?

  教師板書:

  (4)路程比時(shí)間得到了速度,速度也就是比值,比值相當(dāng)于除法中的什么?

  (5)在這組題中誰與誰是兩種相關(guān)聯(lián)的量?它們是如何相關(guān)聯(lián)的?舉例說明變化規(guī)律.

  3.小結(jié):有什么規(guī)律?

《反比例》數(shù)學(xué)教案3

  教學(xué)目標(biāo)

  1.進(jìn)一步理解正、反比例的意義,弄清它們的聯(lián)系和區(qū)別,掌握它們的變化規(guī)律.

  2.使學(xué)生能正確判斷正、反比例.

  教學(xué)重點(diǎn)

  正、反比例的聯(lián)系和區(qū)別.

  教學(xué)難點(diǎn)

  能正確判斷正、反比例.

  教學(xué)過程()

  一、復(fù)習(xí)準(zhǔn)備

  判斷下面每題中兩種量成正比例還是成反比例.

  1.單價(jià)一定,數(shù)量和總價(jià).

  2.路程一定,速度和時(shí)間.

  3.正方形的邊長(zhǎng)和它的面積.

  4.時(shí)間一定,工效和工作總量.

  二、新授教學(xué)

 。ㄒ唬┏鍪菊n題

  教師明確:我們已經(jīng)初步學(xué)習(xí)了判斷兩種量是不是成正比例或反比例的關(guān)系,這節(jié)課通過比較弄清它們有什么相同點(diǎn)和不同點(diǎn).

 。ǘ┙虒W(xué)例7(課件演示:正反比例的比較)

  例7.觀察下面的兩個(gè)表,根據(jù)表分別填空.

  表1

  路程(千米)

  5

  10

  25

  50

  100

  時(shí)間(時(shí))

  1

  2

  5

  10

  20

  在表1中相關(guān)聯(lián)的量是( )和( ),( )隨著( )變化,( )是一定的.因此,時(shí)間和路程成( )關(guān)系.

  表2

  速度(千米/時(shí))

  100

  50

  20

  10

  5

  時(shí)間(時(shí))

  1

  2

  5

  10

  20

  在表2中相關(guān)聯(lián)的量是( )和( ),( )隨著( )變化,( )是一定的.因此,時(shí)間和速度成( )關(guān)系.

  1.分組討論、交流.

  2.引導(dǎo)學(xué)生討論回答

  (1)從表1中,怎樣知道速度是一定的?根據(jù)什么判斷速度和時(shí)間成正比例?

 。2)從表2中,怎樣知道路程是一定的?根據(jù)什么判斷速度和時(shí)間成反比例?

  3.引導(dǎo)學(xué)生總結(jié)路程、速度、時(shí)間三個(gè)量中每?jī)蓚(gè)量之間的關(guān)系.

  速度×?xí)r間=路程

  4.練習(xí):判斷下面兩個(gè)量成什么比例.

  (1)當(dāng)速度一定時(shí),路程和時(shí)間.

  (2)當(dāng)路程一定時(shí),速度和時(shí)間.

  (3)當(dāng)時(shí)間一定時(shí),路程和速度.

  (三)比較正比例和反比例的關(guān)系.(繼續(xù)演示課件:正反比例的比較)

  討論填表:正、反比例異同點(diǎn)

  相同點(diǎn):都有兩種相關(guān)聯(lián)的量,一種量隨著另一種量變化.

  不同點(diǎn):正比例是變化方向相同,一種量擴(kuò)大或縮小,另一種量也擴(kuò)大或縮。鄬(duì)應(yīng)的`每?jī)蓚(gè)數(shù)的比值(商)是一定的.反比例是變化方向相反,一種量擴(kuò)大(縮。硪环N量反而縮。〝U(kuò)大).相對(duì)應(yīng)的每?jī)蓚(gè)數(shù)的積是一定的.

  三、課堂小結(jié)

  今天我們學(xué)習(xí)了哪些知識(shí)?你還有什么問題嗎?

  四、鞏固練習(xí)

 。ㄒ唬┡袛鄦蝺r(jià)、數(shù)量和總價(jià)中一種量一定,另外兩種量成什么比例.為什么?

  1.單價(jià)一定,數(shù)量和總價(jià)成( ).

  2.總價(jià)一定,單價(jià)和數(shù)量成( ).

  3.?dāng)?shù)量一定,總價(jià)和單價(jià)成( ).

  (二)從汽車每次運(yùn)貨噸數(shù)、運(yùn)貨的次數(shù)和運(yùn)貨的總噸數(shù)這三種量中,你能找出哪幾種比例關(guān)系?

  五、課后作業(yè)

  一個(gè)單位食堂每天用大米的數(shù)量、用的天數(shù)和大米的總量如下表.

  表1

  在表1中,相關(guān)聯(lián)的量是( )和( ),( )隨著( )變化,( )是一定的.因此,大米的總量和用的天數(shù)成( )關(guān)系.

  表2

  在表2中,相關(guān)聯(lián)的量是( )和( ),( )隨著( )變化,( )是一定的.因此,每天用的數(shù)量和用的天數(shù)成( )關(guān)系.

  六、板書設(shè)計(jì)

  正比例和反比例的比較

  相同點(diǎn)

  1.都有兩種相關(guān)聯(lián)的量.

  2.一種量隨著另一種量變化.

  不同點(diǎn)

  1.變化方向相同,一種量擴(kuò)大或縮小,另一種量也擴(kuò)大或縮。

  2.相對(duì)應(yīng)的每?jī)蓚(gè)數(shù)的比值(商)是一定的.

  1.變化方向相反,一種量擴(kuò)大(縮。硪环N量反而縮。〝U(kuò)大).

  2.相對(duì)應(yīng)的每?jī)蓚(gè)數(shù)的積是一定的.

  探究活動(dòng)

  靈活判斷

  活動(dòng)目的

  1.理解正反比例的意義.

  2.能根據(jù)正反比例的意義,正確判斷兩種量是否成比例,成什么比例.

  活動(dòng)過程

  1.教師出示思考題目:

 。1)正方形的邊長(zhǎng)和面積是否成比例?

 。2)圓的面積和半徑是否成比例?

  2.學(xué)生分小組討論.

  3.學(xué)生分小組匯報(bào)討論結(jié)果.

  4.師生共同小結(jié)并總結(jié)規(guī)律.

《反比例》數(shù)學(xué)教案4

  教學(xué)過程設(shè)計(jì)

  一、創(chuàng)設(shè)情境 引入課題

  活動(dòng)1

  問題:

  你們還記得一次函數(shù)圖象與性質(zhì)嗎?

  設(shè)計(jì)意圖

  通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生復(fù)習(xí)一次函數(shù)圖象的知識(shí),激發(fā)學(xué)生參與課堂學(xué)習(xí)的熱情,為學(xué)習(xí)反比例函數(shù)的圖象奠定基礎(chǔ)。

  師生形為:

  教師提出問題。學(xué)生思考、交流,回答問題。教師根據(jù)學(xué)生活動(dòng)情況進(jìn)行補(bǔ)充和完善。

  二、類比聯(lián)想 探究交流

  活動(dòng)2

  問題:

  例2 畫出反比例函數(shù)y= 與y=- 的圖象。

  (教師先引導(dǎo)學(xué)生思考,示范畫出反比例函數(shù)y= 的圖象,再讓學(xué)生嘗試畫出反比例函數(shù)y=- 的圖象。)

  設(shè)計(jì)意圖:

  通過畫反比例函數(shù)的圖象使學(xué)生進(jìn)一步了解用描點(diǎn)的方法畫函數(shù)圖象的基本步驟,其他函數(shù)的圖象奠定基礎(chǔ),同時(shí)也培養(yǎng)了學(xué)生動(dòng)手操作能力。

  師生形為:

  學(xué)生可以先自己動(dòng)手畫圖,相互觀摩。

  在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:

  1學(xué)生能否順利進(jìn)行三種表示方法的相互轉(zhuǎn)換:

  2是否熟悉作出函數(shù)圖象的主要步驟,會(huì)作反比例函數(shù)的圖象;

  3在動(dòng)手作圖的過程中,能否勤于動(dòng)手,樂于探索。

  比較y= 、y=- 的圖象有什么共同特征?它們之間有什么關(guān)系?

  (由學(xué)生觀察思考,回答問題,并使學(xué)生了解反比例函數(shù)的圖象是一種雙曲線。)

  設(shè)計(jì)意圖:

  學(xué)生通過觀察比較,總結(jié)兩個(gè)反比例函數(shù)圖象的共同特征(都是雙曲線),以及在平面直角坐標(biāo)系中的位置。在活動(dòng)中,讓學(xué)生自己去觀察、類比發(fā)現(xiàn),過程讓學(xué)生自己去感受,結(jié)論讓學(xué)生自己去總結(jié),實(shí)現(xiàn)學(xué)生主動(dòng)參與、探究新知的目的。

  師生形為:

  學(xué)生分組針對(duì)問題結(jié)合畫出的圖象分類討論,歸納總結(jié)反比例函數(shù)圖象的共同點(diǎn),為后面性質(zhì)的探索打下基礎(chǔ)。

  教師參與到學(xué)生的討論中去,積極引導(dǎo)。

  (三)探索比較 發(fā)現(xiàn)規(guī)律

  活動(dòng)3

  問題:

  觀察反比例函數(shù)y= 與y=- 的圖象。

  你能發(fā)現(xiàn)它們的共同特征以及不同點(diǎn)嗎?

  每個(gè)函數(shù)的圖象分別位于哪幾個(gè)象限?

  在每一個(gè)象限內(nèi),y隨x的變化如何變化?

  由學(xué)生分小組討論,觀察思考后進(jìn)行分析、歸納,得到反比例函數(shù)y= 的.性質(zhì):

  形狀: 反比例函數(shù)的圖象是由兩支雙曲線組成的.因此稱反比例函數(shù)的圖象為雙曲線;

  位置: 當(dāng)k0時(shí),兩支雙曲線分別位于第一,三象限內(nèi),在每個(gè)象限內(nèi)y隨x增大而減小;當(dāng)k0時(shí),兩支雙曲線分別位于第二,四象限內(nèi),在每個(gè)象限內(nèi)y隨x增大而增大;

  任意一組變量的乘積是一個(gè)定值,即xy=k.

  (注意:雙曲線的兩個(gè)分支都不會(huì)與x軸,y軸相交。)

  學(xué)生通過對(duì)反比例函數(shù)圖象進(jìn)行觀察、分析,總結(jié)出了反比例函數(shù)的性質(zhì),使學(xué)生明白性質(zhì)的可靠性;通過對(duì)函數(shù)圖象的位置與k值符號(hào)關(guān)系的探討,以及反比例函數(shù)的兩個(gè)分支在相應(yīng)的象限內(nèi),y隨x值的增大(或減小)而增大(或減小)的探討,有利于加深學(xué)生對(duì)性質(zhì)的理解和掌握;使學(xué)生經(jīng)歷從特殊到一般的過程,體驗(yàn)知識(shí)產(chǎn)生、形成的過程,逐步達(dá)到培養(yǎng)學(xué)生抽象概括能力和激發(fā)求知欲望;同時(shí)通過對(duì)反比例函數(shù)增減性的討論,對(duì)學(xué)生進(jìn)行辯證唯物主義思想教育.

  四、 運(yùn)用新知 拓展訓(xùn)練

  設(shè)計(jì)意圖:

  拓展練習(xí)是為了讓學(xué)生靈活運(yùn)用反比例函數(shù)性質(zhì)解決問題,學(xué)生在研究問題的特點(diǎn)時(shí),能夠緊扣性質(zhì)進(jìn)行分析,達(dá)到理解并掌握性質(zhì)的目的.

  師生形為:

  學(xué)生獨(dú)立思考完成。

  教師巡視,引導(dǎo)學(xué)困生完成任務(wù)。

  五、歸納總結(jié) 布置作業(yè)

  問題:

  本節(jié)課學(xué)習(xí)了哪些知識(shí)?在知識(shí)應(yīng)用過程中需要注意什么?你有什么收獲?

《反比例》數(shù)學(xué)教案5

  教學(xué)目標(biāo)

  1.使學(xué)生理解,能夠初步判斷兩種相關(guān)聯(lián)的量是否成比例,成什么比例.

  2.通過觀察、比較、歸納,提高學(xué)生綜合概括推理的能力.

  3.滲透辯證唯物主義的觀點(diǎn),進(jìn)行“運(yùn)用變化觀點(diǎn)”的啟蒙教育.

  教學(xué)重點(diǎn)

  理解正反比例的意義,掌握正反比例的變化的規(guī)律.

  教學(xué)難點(diǎn)

  理解正反比例的意義,掌握正反比例的變化的規(guī)律.

  教學(xué)過程

  一、導(dǎo)入新課

 。ㄒ唬┳蛱炖蠋熧I了一些蘋果,吃了一部分,你能想到什么?

 。ǘ┙處熖釂

  1.你為什么馬上能想到還剩多少呢?

  2.是不是因?yàn)槌粤说暮褪O碌氖莾煞N相關(guān)聯(lián)的量?

  教師板書:兩種相關(guān)聯(lián)的量

 。ㄈ┙處熣勗

  在實(shí)際生活中兩種相關(guān)的量是很多的,例如總價(jià)和單價(jià)是兩種相關(guān)聯(lián)的量,總價(jià)和

  數(shù)量也是兩種相關(guān)聯(lián)的量.你還能舉出一些例子嗎?

  二、新授教學(xué)

  (一)成正比例的量

  例1.一列火車行駛的時(shí)間和所行的路程如下表:

時(shí)間(時(shí))




1




2




3




4




5




6




7




8




……




路程(千米)




90




180




270




360




450




540




630




720




……




  1.寫出路程和時(shí)間的比并計(jì)算比值.

  (1)

 。2) 2表示什么?180呢?比值呢?

 。3) 這個(gè)比值表示什么意義?

 。4) 360比5可以嗎?為什么?

  2.思考

 。1)180千米對(duì)應(yīng)的時(shí)間是多少?4小時(shí)對(duì)應(yīng)的路程又是多少?

  (2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?

  教師板書:時(shí)間、路程、速度

 。3)速度是怎樣得到的?

  教師板書:

 。4)路程比時(shí)間得到了速度,速度也就是比值,比值相當(dāng)于除法中的什么?

 。5)在這組題中誰與誰是兩種相關(guān)聯(lián)的量?它們是如何相關(guān)聯(lián)的?舉例說明變化規(guī)律.

  3.小結(jié):有什么規(guī)律?

  教師板書:商不變

  (二)成反比例的量

  1.華豐機(jī)械廠加工一批機(jī)器零件,每小時(shí)加工的數(shù)量和所需的加工時(shí)間如下表.

工效(個(gè))




10




20




30




40




50




60




……
時(shí)間(時(shí))

60




30




20




15




12




10




……




  2.教師提問

 。1)計(jì)算工效和時(shí)間的乘積.

 。2)這一組題中涉及了幾種量?誰與誰是相關(guān)聯(lián)的量?

 。3)請(qǐng)你舉例說明誰與誰是相對(duì)應(yīng)的兩個(gè)數(shù)?

 。4)在這一組題中兩種相關(guān)聯(lián)的量是如何變化的?(舉例說明)

  3.小結(jié):有什么規(guī)律?(板書:積不變)

  (三)不成比例的量

  1.出示表格

運(yùn)走的噸數(shù)




10




20




30




40




剩下的噸數(shù)




90




80




70




60




總噸數(shù)(和不變)




100




100




100




100




  2.教師提問

 。1)總噸數(shù)是怎樣得到的?

 。2)誰與誰是兩種相關(guān)聯(lián)的量?

 。3)它們又是怎樣變化的?變化的規(guī)律是什么?

  運(yùn)走的噸數(shù)少,剩下的噸數(shù)多;運(yùn)走的噸數(shù)多,剩下的噸數(shù)少;總和不變

  (四)結(jié)合三組題觀察、討論、總結(jié)變化規(guī)律.

  討論題:

  1.這三組題每組題中誰與誰是兩種相關(guān)聯(lián)的量?

  2.在變化過程當(dāng)中,它們的異同點(diǎn)是什么?

  共同點(diǎn):都有兩種相關(guān)聯(lián)的量,一種量變化,另一量也隨著變化

  不同點(diǎn):第一組商不變,第二組積不變,第三組和不變.

  總結(jié):

  3.分別概括

  4.強(qiáng)調(diào)第三組題中兩種相關(guān)聯(lián)的量叫做不成比例

  5.教師提問

 。1)兩種量成正比例必須具備什么條件?

 。2)兩種量成反比例必須具備什么條件?

 。ㄎ澹┳帜戈P(guān)系式

  三、鞏固練習(xí)

  判斷下面各題是否成比例?成什么比例?

  1.一種圓珠筆

總價(jià)(元)




1。2




2。4




3。6




4。8




6




7。2




支數(shù)




1




2




3




4




5




6




單價(jià)(元)




1




2




4




5




10




支數(shù)




100




50




25




20




10




 。1)表中有哪兩種相關(guān)聯(lián)的量?

 。2)說出幾組這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比

  (3)每組等式說明了什么?

 。4)兩種相關(guān)的量是否成比例?成什么比例?

  2.當(dāng)速度一定,時(shí)間路程成什么比例?

  當(dāng)時(shí)間一定,路程和速度成什么比例?

  當(dāng)路程一定,速度和時(shí)間成什么比例?

  3.長(zhǎng)方形的面一定,長(zhǎng)和寬

  4.修一條路,已修的米數(shù)和剩下的米數(shù).

  四、課堂總結(jié)

  今天這節(jié)課我們初步了解了正反比例的意義,并能運(yùn)用正反比例的意義判斷一些簡(jiǎn)單的問題.通過正反比例意義的對(duì)比,使我們進(jìn)一步認(rèn)識(shí)到,要判斷兩種相關(guān)聯(lián)的量是成正比例關(guān)系還是反比例的關(guān)系,要抓住兩種相關(guān)聯(lián)的量的`變化規(guī)律,這是本質(zhì).

  五、課后作業(yè)

  (一)判斷下面每題中的兩種量是不是成正比例,并說明理由.

  1.蘋果的單價(jià)一定,購(gòu)買蘋果的數(shù)量和總價(jià).

  2.輪船行駛的速度一定,行駛的路程和時(shí)間.

  3.每小時(shí)織布米數(shù)一定,織布總米數(shù)和時(shí)間.

  4.長(zhǎng)方形的寬一定,它的面積和長(zhǎng).

 。ǘ┡袛嘞旅婷款}中的兩種量是不是成反比例,并說明理由.

  1.煤的總量一定,每天的燒煤量和能夠燒的天數(shù).

  2.種子的總量一定,每公頃的播種量和播種的公頃數(shù).

  3.李叔叔從家到工廠,騎自行車的速度和所需時(shí)間.

  4.華容做12道數(shù)學(xué)題,做完的題和沒有做的題.

  六、板書設(shè)計(jì)

《反比例》數(shù)學(xué)教案6

  教學(xué)內(nèi)容:教科書第22—24頁(yè)反比例的意義,練習(xí)六的第4—6題。

  教學(xué)目的:

  1.使學(xué)生理解反比例的意義.能夠正確判斷兩種量是不是成反比例。

  2.使學(xué)生進(jìn)一步認(rèn)識(shí)事物之間的相互聯(lián)系和發(fā)展變化規(guī)律。

  3.初步滲透函數(shù)思想。

  教具準(zhǔn)備:投影儀、投影片、小黑板。

  教學(xué)過程():

  一、復(fù)習(xí)

  1.讓學(xué)生說說什么是成正比例的量:

  2.用投影片出示下面的題:

  (1)下面各題中哪兩種量成正比例?為什么?

 、俟P記本單價(jià)一定,數(shù)量和總價(jià):

 、崞囆旭偹俣纫欢ǎ旭偟穆烦毯蜁r(shí)間。

  ②工作效率一定.’工作時(shí)間和工作總量。

 、僖淮竺椎闹亓恳欢ǎ粤说暮褪O碌摹

  (2)說出每小時(shí)加工零件數(shù)、加工時(shí)間和加工零件總數(shù)三者間的數(shù)量關(guān)系。在什么條件下,其中兩種量成正比例?

  二、導(dǎo)入新課

  教師:如果加工零件總數(shù)一定。每小時(shí)加工數(shù)和加工時(shí)間會(huì)成什么樣的變化.關(guān)系怎樣?就是我們這節(jié)課要學(xué)習(xí)的內(nèi)容。

  三、新課

  1.教學(xué)例4。

  出示例4;豐機(jī)械廠加工一批機(jī)器零件。每小時(shí)加工的數(shù)量和所需的加工時(shí)間如下表。

  讓學(xué)生觀察這個(gè)表,然后每四人一組討論下面的問題:

  (1)表中有哪兩種量?

  (2)所需的加工時(shí)間怎樣隨著每小時(shí)加工的個(gè)數(shù)變化?

  (3)每?jī)蓚(gè)相對(duì)應(yīng)的數(shù)的乘積各是多少?

  學(xué)生分組討論后集中發(fā)言。然后每個(gè)小組選代表回答上面的問題。隨著學(xué)生的回答,教師板書如下:每小時(shí)加工數(shù)加工時(shí)間

  10 × 60 =600。

  30 × 20 =600。

  40 × 15 =600,

  “這個(gè)積600。實(shí)際上是什么?”在“加工時(shí)間”后面板書:零件總數(shù)

  “積一定,就說明零件總數(shù)怎樣?”在零件總數(shù)后面板書:(一定)

  “每小時(shí)加工數(shù)、加工時(shí)間和零件總數(shù)這三種量有什么關(guān)系呢?”

  學(xué)生回答后,教師小結(jié):通過剛才的觀察分析.我門可以看出。表中每小時(shí)加工零件數(shù)和所需的加工時(shí)間是兩種相關(guān)聯(lián)的量。所需的加工時(shí)間是隨著每小時(shí)加工數(shù)量的變化而變化的,每小時(shí)加工的數(shù)量擴(kuò)大。所需的加工時(shí)間反而縮小3每小時(shí)加工的'數(shù)量縮小,所需的加工的時(shí)間反而擴(kuò)大。它們擴(kuò)大、縮小的規(guī)律是:每小時(shí)加工的零件的數(shù)量和所需的加工時(shí)間的積都等于600,即總是一定的:我們把這種關(guān)系寫成式子就是:每小時(shí)加工數(shù)×加工的時(shí)間=零件總數(shù)(一定)。

  2.教學(xué)例5。

  用小黑板出示例5用600頁(yè)紙裝訂成同樣的練習(xí)本,每本的頁(yè)數(shù)和裝訂的本數(shù)有什么關(guān)系呢?請(qǐng)你先填寫下表。

  (1)理解題意,填寫裝訂本數(shù)。

  “誰能說說表中第一欄數(shù)據(jù)的意思?”(用600頁(yè)紙裝訂練習(xí)本,如果每本練習(xí)本15頁(yè),可以裝訂40本。)

  “這40本是怎么計(jì)算出來的?”(用600÷15)

  “如果每本練習(xí)本是20頁(yè),你能計(jì)算出可以裝訂多少這樣的練習(xí)本嗎?如果每本是25頁(yè)呢?……請(qǐng)你把計(jì)算出來的本數(shù)填在教科書第23頁(yè)的表中!苯處煱褜W(xué)生報(bào)出的數(shù)據(jù)填在黑板上的表中。

  (2)觀察分析表中兩種量的變化規(guī)律。

  讓學(xué)生觀察上表,回答下面的問題:“表中有哪兩種量?”(板書:每本的頁(yè)數(shù)裝訂的本數(shù))

  “裝訂的本數(shù)是怎樣隨著每本的頁(yè)數(shù)變化的?”隨著學(xué)生的回答,板書如下:每本的頁(yè)數(shù) 裝訂的本數(shù)

  15 40

  20 30

  25 24

  一’然后讓學(xué)生判斷下面每題中的兩種量成不成比例,是成正比例還是成反比例。

  1,單價(jià)一定.?dāng)?shù)量和總價(jià)。

  2,路程一定,速度和時(shí)間。。

  3,正方形的邊長(zhǎng)和它的面積。

  1.時(shí)間一定,工效和工作總量。

  二、導(dǎo)入新課

  教師:我們?cè)谇皟晒?jié)課分別學(xué)習(xí)了成正比例的量和成反比例的量。初步學(xué)會(huì)判斷

  兩種量是不是成正比例或反比例的關(guān)系,發(fā)現(xiàn)有些同學(xué)判斷時(shí)還不夠準(zhǔn)確。這節(jié)課我

  們要通過比較弄清成正比例的量和成反比例的量有什么相同點(diǎn)和不同點(diǎn)。

  板書課題:正比例和反比例的比較

  三、新課

  1.教學(xué)例7。

  出示例7的兩個(gè)表:

  表1 表2

  讓學(xué)生觀察上面的兩個(gè)表,然后根據(jù)兩個(gè)表所提的問題,分別在教科書上填空。訂正時(shí)。指名說出自己是怎樣填的,教師板書:

  在表l中: 在表2中:

  相關(guān)聯(lián)的量是路程和時(shí)間. 路程隨著相關(guān)聯(lián)的量是速度 路程隨 時(shí)間變化,速度是 和時(shí)間,速度隨著時(shí)間變化

  一定。因此,路程和時(shí)間 ,路程是一定的。因此,速

  成正比例關(guān)系。 度和時(shí)間成反比例關(guān)系

  然后提問:

  (1)從表1,你怎樣發(fā)現(xiàn)速度是一定的?你根據(jù)什么判斷路程和時(shí)間成正比例/

  (2)從表2,你怎樣發(fā)現(xiàn)路程是一定的?你根據(jù)什么判斷速度和時(shí)間成反比例?

  教師:路程、速度和時(shí)間這三個(gè)量中每?jī)蓚(gè)量之間有什么樣的比例關(guān)系?

  板書:速度×?xí)r間=路程

  =速度 =速度

  教師:當(dāng)速度一·定時(shí),路程和時(shí)間成什么比例關(guān)系?

  教師:當(dāng)路程一定時(shí),速度和時(shí)間成什么比例關(guān)系?

  教師:當(dāng)時(shí)間一定時(shí)。路程和速度成什么比例關(guān)系?

  2.比較正比例和反比例關(guān)系。

  教師:結(jié)合上面兩個(gè)例子,比較——下正比例關(guān)系和反比例關(guān)系,你能寫出它們的相同點(diǎn)和不同點(diǎn)嗎?試試看。組織討論,教師歸納并板書:

  四、鞏固練習(xí)

  1.做教科書第28頁(yè)“做一做”中的題目。

  讓學(xué)生自己填,并說一說為什么。

  2.做練習(xí)七的第1—2題。

  教師巡視,個(gè)別輔導(dǎo),最后訂正。

  五、小結(jié)

  教師:請(qǐng)同學(xué)們說說正比例和反比例關(guān)系有什么相同點(diǎn)和不同點(diǎn)?

《反比例》數(shù)學(xué)教案7

  教學(xué)目的:通過混合練習(xí),加深學(xué)生對(duì)正比例和反比例的意義的理解,提高判斷能力。

  教學(xué)過程:

  一、引入

  教師:前面我們學(xué)習(xí)了正比例和反比例的意義.上節(jié)課我們又把它們進(jìn)行了比較,你們會(huì)根據(jù)正比例和反比例的意義,比較熟練地判斷兩種相關(guān)聯(lián)的量是成正比例還是成反比例嗎?

  二、課堂練習(xí)

  1.分析、研究第3題。

  讓學(xué)生先說出長(zhǎng)方形的長(zhǎng)、寬、面積三個(gè)量中.其中一個(gè)量與另外兩個(gè)量的`關(guān)系,教師板書出來:長(zhǎng)寬=面積

  = 長(zhǎng) =寬

  提問:

  當(dāng)面積一定時(shí),長(zhǎng)和寬成什么比例關(guān)系?

  當(dāng)長(zhǎng)一定時(shí),面積和寬成什么比例關(guān)系?

  當(dāng)寬一定時(shí),面積和長(zhǎng)成什么比例關(guān)系?

  教師:通過上面的分析,我們知道:要判斷三種相關(guān)聯(lián)的量在什么條件下組成哪種比例關(guān)系,我們可以先寫出它們中的一種量與另外兩種量的關(guān)系,再進(jìn)行分析,。

  2.第4題,讓學(xué)生仿照第3題的方法做。訂正后,教師板書如下:

  每次運(yùn)貨噸數(shù)運(yùn)貨次數(shù)=運(yùn)貨的總噸數(shù)(一定) 每次運(yùn)貨噸數(shù) 與運(yùn)貨次數(shù) =運(yùn)貨次數(shù)(一定) 成反比例關(guān) 系。

  運(yùn)貨的總噸 =每次運(yùn)貨噸數(shù)(一定) 數(shù)與運(yùn)貨次 數(shù)成正比例 關(guān)系

  3.第5題,讓學(xué)生獨(dú)立做,教師巡視,注意個(gè)別輔導(dǎo)。

  4.第6題,先讓學(xué)生自己判斷,然后指名回答,第(1)小題成反比例,第(2)、(4)、(6)小題成正比例,第(3)、(5)小題不成比例。

  5.第7題,學(xué)生獨(dú)立解答后,選一題說說是怎樣解的。

  6.學(xué)有余力的學(xué)生做第8題。

《反比例》數(shù)學(xué)教案8

  三維目標(biāo)

  一、知識(shí)與技能

  1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題.

  2.能綜合利用物理杠桿知識(shí)、反比例函數(shù)的知識(shí)解決一些實(shí)際問題.

  二、過程與方法

  1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題.

  2. 體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力.

  三、情感態(tài)度與價(jià)值觀

  1.積極參與交流,并積極發(fā)表意見.

  2.體驗(yàn)反比例函數(shù)是有效地描述物理世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具.

  教學(xué)重點(diǎn)

  掌握從物理問題中建構(gòu)反比例函數(shù)模型.

  教學(xué)難點(diǎn)

  從實(shí)際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析物理問題,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的思想.

  教具準(zhǔn)備

  多媒體課件.

  教學(xué)過程

  一、創(chuàng)設(shè)問題情境,引入新課

  活動(dòng)1

  問 屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,這也稱為跨學(xué)科應(yīng)用.下面的例子就是其中之一.

  在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當(dāng)電阻R=5歐姆時(shí),電流I=2安培.

  (1)求I與R之間的函數(shù)關(guān)系式;

  (2)當(dāng)電流I=0.5時(shí),求電阻R的值.

  設(shè)計(jì)意圖:

  運(yùn)用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問題,提高各學(xué)科相互之間的綜合應(yīng)用能力.

  師生行為:

  可由學(xué)生獨(dú)立思考,領(lǐng)會(huì)反比例函數(shù)在物理學(xué)中的綜合應(yīng)用.

  教師應(yīng)給“學(xué)困生”一點(diǎn)物理學(xué)知識(shí)的引導(dǎo).

  師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關(guān)系,可設(shè)出其表達(dá)式,再由已知條件(I與R的一對(duì)對(duì)應(yīng)值)得到字母系數(shù)k的值.

  生:(1)解:設(shè)I=kR ∵R=5,I=2,于是

  2=k5 ,所以k=10,∴I=10R .

  (2) 當(dāng)I=0.5時(shí),R=10I=100.5 =20(歐姆).

  師:很好!“給我一個(gè)支點(diǎn),我可以把地球撬動(dòng).”這是哪一位科學(xué)家的名言?這里蘊(yùn)涵著什么 樣的原理呢?

  生:這是古希臘科學(xué)家阿基米德的名言.

  師:是的.公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點(diǎn)的距離反比于其重量,則杠桿平衡,通俗一點(diǎn)可以描述為;

  阻力×阻力臂=動(dòng)力×動(dòng)力臂(如下圖)

  下面我們就來看一例子.

  二、講授新課

  活動(dòng)2

  小偉欲用撬棍橇動(dòng)一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.

  (1)動(dòng)力F與動(dòng)力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動(dòng)力臂為1.5米時(shí),撬動(dòng)石頭至少需要多大的力?

  (2)若想使動(dòng)力F不超過題(1)中所用力的一半,則動(dòng)力臂至少要加長(zhǎng)多少?

  設(shè)計(jì)意圖:

  物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系.因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,即跨學(xué)科綜合應(yīng)用.

  師生行為:

  先由學(xué)生根據(jù)“杠桿定律”解決上述問題.

  教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系.

  教師在此活動(dòng)中應(yīng)重點(diǎn)關(guān)注:

 、賹W(xué)生能否主動(dòng)用“杠桿定律”中杠桿平衡的條件去理解實(shí)際問題,從而建立與反比例函數(shù)的關(guān)系;

 、趯W(xué)生能否面對(duì)困難,認(rèn)真思考,尋找解題的途徑;

 、蹖W(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),對(duì)數(shù)學(xué)和物理有著濃厚的興趣.

  師:“撬動(dòng)石頭”就意味著達(dá)到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.

  生:解:(1)根據(jù)“杠桿定律” 有

  Fl=1200×0.5.得F =600l

  當(dāng)l=1.5時(shí),F(xiàn)=6001.5 =400.

  因此,撬動(dòng)石頭至少需要400牛頓的力.

  (2)若想使動(dòng)力F不超過題(1)中所用力的一半,即不超過200牛,根據(jù)“杠桿定律”有

  Fl=600,

  l=600F .

  當(dāng)F=400×12 =200時(shí),

  l=600200 =3.

  3-1.5=1.5(米)

  因此,若想用力不超過400牛頓的一半,則動(dòng)力臂至少要如長(zhǎng)1.5米.

  生:也可用不等式來解,如下:

  Fl=600,F(xiàn)=600l .

  而F≤400×12 =200時(shí).

  600l ≤200

  l≥3.

  所以l-1.5≥3-1.5=1.5.

  即若想用力不超過400牛頓的一半,則動(dòng)力臂至少要加長(zhǎng)1.5米.

  生:還可由函數(shù)圖象,利用反比例函數(shù)的'性質(zhì)求出.

  師:很棒!請(qǐng)同學(xué)們下去親自畫出圖象完成,現(xiàn)在請(qǐng)同學(xué)們思考下列問題:

  用反比例函數(shù)的知識(shí)解釋:在我們使用橇棍時(shí),為什么動(dòng)力臂越長(zhǎng)越省力?

  生:因?yàn)樽枇妥枇Ρ鄄蛔儯O(shè)動(dòng)力臂為l,動(dòng)力為F,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得Fl=k,即F=kl (k為常數(shù)且k>0)

  根據(jù)反比例函數(shù)的性質(zhì),當(dāng)k>O時(shí),在第一象限F隨l的增大而減小,即動(dòng)力臂越長(zhǎng)越省力.

  師:其實(shí)反比例函數(shù)在實(shí)際運(yùn)用中非常廣泛.例如在解決經(jīng)濟(jì)預(yù)算問題中的應(yīng)用.

  活動(dòng)3

  問題:某地上年度電價(jià)為0.8元,年用電量為1億度,本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當(dāng)x=0.65元時(shí),y=0.8.(1)求y與x之間的函數(shù)關(guān)系式;(2)若每度電的成本價(jià)0.3元,電價(jià)調(diào)至0.6元,請(qǐng)你預(yù)算一下本年度電力部門的純收人多少?

  設(shè)計(jì)意圖:

  在生活中各部門,經(jīng)常遇到經(jīng)濟(jì)預(yù)算等問題,有時(shí)關(guān)系到因素之間是反比例函數(shù)關(guān)系,對(duì)于此類問題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進(jìn)而用函數(shù)關(guān)系式解決一個(gè)具體問題.

  師生行為:

  由學(xué)生先獨(dú)立思考,然后小組內(nèi)討論完成.

  教師應(yīng)給予“學(xué)困生”以一定的幫助.

  生:解:(1)∵y與x -0.4成反比例,

  ∴設(shè)y=kx-0.4 (k≠0).

  把x=0.65,y=0.8代入y=kx-0.4 ,得

  k0.65-0.4 =0.8.

  解得k=0.2,

  ∴y=0.2x-0.4=15x-2

  ∴y與x之間的函數(shù)關(guān)系為y=15x-2

  (2)根據(jù)題意,本年度電力部門的純收入為

  (0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)

  答:本年度的純收人為0.6億元,

  師生共析:

  (1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個(gè)變量,于是可設(shè)出表達(dá)式,再由題目的條件x=0.65時(shí),y=0.8得出字母系數(shù)的值;

  (2)純收入=總收入-總成本.

  三、鞏固提高

  活動(dòng)4

  一定質(zhì)量的二氧化碳?xì)怏w,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請(qǐng)根據(jù)下圖中的已知條件求出當(dāng)密度ρ=1.1 kg/m3時(shí)二氧化碳?xì)怏w的體積V的值.

  設(shè)計(jì)意圖:

  進(jìn)一步體現(xiàn)物理和反比例函數(shù)的關(guān)系.

  師生行為

  由學(xué)生獨(dú)立完成,教師講評(píng).

  師:若要求出ρ=1.1 kg/m3時(shí),V的值,首先V和ρ的函數(shù)關(guān)系.

  生:V和ρ的反比例函數(shù)關(guān)系為:V=990ρ .

  生:當(dāng)ρ=1.1kg/m3根據(jù)V=990ρ ,得

  V=990ρ =9901.1 =900(m3).

  所以當(dāng)密度ρ=1. 1 kg/m3時(shí)二氧化碳?xì)怏w的氣體為900m3.

  四、課時(shí)小結(jié)

  活動(dòng)5

  你對(duì)本節(jié)內(nèi)容有哪些認(rèn)識(shí)?重點(diǎn)掌握利用函數(shù)關(guān)系解實(shí)際問題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解 析式,再根據(jù)解析式解得.

  設(shè)計(jì)意圖:

  這種形式的小結(jié),激發(fā)了學(xué)生的主動(dòng)參與意識(shí),調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn)機(jī)會(huì),并為程度不同的學(xué)生提供了充分展示自己的機(jī)會(huì),尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,從而使小結(jié)不流于形式而具有實(shí)效性.

  師生行為:

  學(xué)生可分小組活動(dòng),在小組內(nèi)交流收獲, 然后由小組代表在全班交流.

  教師組織學(xué)生小結(jié).

  反比例函數(shù)與現(xiàn)實(shí)生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ).用數(shù)學(xué)模型的解釋物理量之間的關(guān)系淺顯易懂,同時(shí)不僅要注意跨學(xué)科間的綜合,而本學(xué)科知識(shí)間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系.

  板書設(shè)計(jì)

  17.2 實(shí)際問題與反比例函數(shù)(三)

  1.

  2.用反比例函數(shù)的知識(shí)解釋:在我們使 用撬棍時(shí),為什么動(dòng) 力臂越長(zhǎng)越省力?

  設(shè)阻力為F1,阻力臂長(zhǎng)為l1,所以F1×l1=k(k為常數(shù)且k>0).動(dòng)力和動(dòng)力臂分別為F,l.則根據(jù)杠桿定理,

  Fl=k 即F=kl (k>0且k為常數(shù)).

  由此可知F是l的反比例函數(shù),并且當(dāng)k>0時(shí),F(xiàn)隨l的增大而減。

  活動(dòng)與探究

  學(xué)校準(zhǔn)備在校園內(nèi)修建一個(gè)矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關(guān)系式如下圖所示.

  (1)綠化帶面積是多少?你能寫出這一函數(shù)表達(dá)式嗎?

  (2)完成下表,并回答問題:如果該綠化帶的長(zhǎng)不得超過40m,那么它的寬應(yīng)控制在什么范圍內(nèi)?

  x(m) 10 20 30 40

  y(m)

  過程:點(diǎn)A(40,10)在反比例函數(shù)圖象上說明點(diǎn)A的橫縱坐標(biāo)滿足反比例函數(shù)表達(dá)式,代入可求得反比例函數(shù)k的值.

  結(jié)果:(1)綠化帶面積為10×40=400(m2)

  設(shè)該反比例函數(shù)的表達(dá)式為y=kx ,

  ∵圖象經(jīng)過點(diǎn)A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.

  ∴函數(shù)表達(dá)式為y=400x .

  (2)把x=10,20,30,40代入表達(dá)式中,求得y分別為40,20,403 ,10.從圖中可以看出。若長(zhǎng)不超過40m,則它的寬應(yīng)大于等于10m。

《反比例》數(shù)學(xué)教案9

  教學(xué)設(shè)計(jì)思路

  由對(duì)現(xiàn)實(shí)問題的討論抽象出反比例函數(shù)的概念,通過對(duì)問題的解決進(jìn)一步明確:1.反比例函數(shù)的意義;2.反比例函數(shù)的概念;3.反比例函數(shù)的一般形式。

  教學(xué)目標(biāo)

  知識(shí)與技能

  1.從現(xiàn)實(shí)情境和已有的知識(shí)、經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)概念的理解。

  2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,表述反比例函數(shù)的概念。

  過程與方法

  1.經(jīng)歷對(duì)兩個(gè)變量之間相依關(guān)系的討論,培養(yǎng)辯證唯物主義觀點(diǎn)。

  2.經(jīng)歷抽象反比例函數(shù)概念的.過程,發(fā)展抽象思維能力,提高數(shù)學(xué)化意識(shí)。

  情感態(tài)度與價(jià)值觀

  1.認(rèn)識(shí)到數(shù)學(xué)知識(shí)是有聯(lián)系的,逐步感受數(shù)學(xué)內(nèi)容的系統(tǒng)性;

  2.通過分組討論,培養(yǎng)合作交流意識(shí)和探索精神。

  教學(xué)重點(diǎn)和難點(diǎn)

  理解和領(lǐng)會(huì)反比例函數(shù)的概念。

  教學(xué)難點(diǎn)

  領(lǐng)悟反比例函數(shù)的概念。

  教學(xué)方法

  啟發(fā)引導(dǎo)、分組討論

  課時(shí)安排

  1課時(shí)

  教學(xué)媒體

  課件

  教學(xué)過程設(shè)計(jì)

  復(fù)習(xí)引入

  1.什么叫一次函數(shù)?一次函數(shù)的一般形式是怎樣的?什么叫正比例函數(shù)?它與算術(shù)中的正比例有怎樣的關(guān)系?

  2.在上一學(xué)段,我們研究了現(xiàn)實(shí)生活中成反比例的兩個(gè)量

《反比例》數(shù)學(xué)教案10

  從容說課

  我們學(xué)習(xí)知識(shí)的目的就是為了應(yīng)用,如能把書本上學(xué)到的知識(shí)運(yùn)用到實(shí)際生活中,這就說明確實(shí)把知識(shí)學(xué)好了,會(huì)用了

  用函數(shù)觀點(diǎn)處理實(shí)際問題的關(guān)鍵在于分析實(shí)際情境、建立函數(shù)模型,并進(jìn)一步提出明確的數(shù)學(xué)問題,教學(xué)時(shí)應(yīng)注意分析的過程,即將實(shí)際問題置于已有知識(shí)背景之中,用數(shù)學(xué)知識(shí)重新解釋這是什么?可以看成什么?讓學(xué)生逐步學(xué)會(huì)用數(shù)學(xué)的眼光考查實(shí)際問題.同時(shí),在解決問題的過程中,要充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想

  此外,解決實(shí)際問題時(shí).還要引導(dǎo)學(xué)生體會(huì)知識(shí)之間的聯(lián)系以及知識(shí)的綜合運(yùn)用

  教學(xué)目標(biāo)

  (一)教學(xué)知識(shí)點(diǎn)

  1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題的過程

  2.體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí).提高運(yùn)用代數(shù)方法解決問題的能力

  (二)能力訓(xùn)練要求

  通過對(duì)反比例函數(shù)的應(yīng)用,培養(yǎng)學(xué)生解決問題的能力

  (三)情感與價(jià)值觀要求

  經(jīng)歷將一些實(shí)際問題抽象為數(shù)學(xué)問題的過程,初步學(xué)會(huì)從數(shù)學(xué)的角度提出問題。理解問題,并能綜合運(yùn)用所學(xué)的知識(shí)和技能解決問題.發(fā)展應(yīng)用意識(shí),初步認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用

  教學(xué)重點(diǎn)

  用反比例函數(shù)的知識(shí)解決實(shí)際問題

  教學(xué)難點(diǎn)

  如何從實(shí)際問題中抽象出數(shù)學(xué)問題、建立數(shù)學(xué)模型,用數(shù)學(xué)知識(shí)去解決實(shí)際問題

  教學(xué)方法

  教師引導(dǎo)學(xué)生探索法

  教學(xué)過程

  Ⅰ.創(chuàng)設(shè)問題情境,引入新課

  [師]有關(guān)反比例函數(shù)的表達(dá)式,圖象的特征我們都研究過了,那么,我們學(xué)習(xí)它們的目的是什么呢?

  [生]是為了應(yīng)用

  [師]很好;學(xué)習(xí)的目的是為了用學(xué)到的.知識(shí)解決實(shí)際問題.究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來學(xué)一學(xué)

 、. 新課講解

  某校科技小組進(jìn)行野外考察,途中遇到片十幾米寬的爛泥濕地.為了安全、迅速通過這片濕地,他們沿著前進(jìn)路線鋪墊了若干塊木板,構(gòu)筑成一條臨時(shí)通道,從而順利完成了任務(wù);你能解釋他們這樣做的道理嗎?當(dāng)人和木板對(duì)濕地的壓力一定時(shí)隨著木板面積S(m2)的變化,人和木板對(duì)地面的壓強(qiáng)p(Pa)將如何變化?如果人和木板對(duì)濕地地面的壓力合計(jì)600 N,那么

  (1)用含S的代數(shù)式表示p,p是S的反比例函數(shù)嗎?為什么?

  (2)當(dāng)木板畫積為 0.2 m2時(shí).壓強(qiáng)是多少?

  (3)如果要求壓強(qiáng)不超過6000 Pa,木板面積至少要多大?

  (4)在直角坐標(biāo)系中,作出相應(yīng)的函數(shù)圖象

  (5)清利用圖象對(duì)(2)和(3)作出直觀解釋,并與同伴進(jìn)行交流

  [師]分析:首先要根據(jù)題意分析實(shí)際問題中的兩個(gè)變量,然后看這兩個(gè)變量之間存在的關(guān)系,從而去分析它們之間的關(guān)系是否為反比例函數(shù)關(guān)系,若是則可用反比例函數(shù)的有關(guān)知識(shí)去解決問題

  請(qǐng)大家互相交流后回答

  [生](1)由p=得p=

  p是S的反比例函數(shù),因?yàn)榻o定一個(gè)S的值.對(duì)應(yīng)的就有唯一的一個(gè)p值和它對(duì)應(yīng),根據(jù)函數(shù)定義,則p是S的反比例函數(shù)

  (2)當(dāng)S= 0.2 m2時(shí), p==3000(Pa)

  當(dāng)木板面積為 0.2m2時(shí),壓強(qiáng)是3000Pa.

  (3)當(dāng)p=6000 Pa時(shí),

  S==0.1(m2)

  如果要求壓強(qiáng)不超過6000 Pa,木板面積至少要 0.1 m2

  (4)圖象如下:

  (5)(2)是已知圖象上某點(diǎn)的橫坐標(biāo)為0.2,求該點(diǎn)的縱坐標(biāo);(3)是已知圖象上點(diǎn)的縱坐標(biāo)不大于6000,求這些點(diǎn)所處的位置及它們橫坐標(biāo)的取值范圍

  [師]這位同學(xué)回答的很好,下面我要提一個(gè)問題,大家知道反比例函數(shù)的圖象是兩支雙曲線、它們要么位于第一、三象限,要么位于第二、四象限,從(1)中已知p=>0,所以圖象應(yīng)位于第一、三象限,為什么這位同學(xué)只畫出了一支曲線,是不是另一支曲線丟掉了呢?還是因?yàn)轭}中只給出了第一象限呢?

  [生]第三象限的曲線不存在,因?yàn)檫@是實(shí)際問題,S不可能取負(fù)數(shù),所以第三象限的曲線不存在

  [師]很好,那么在(1)中是不是應(yīng)該有條件限制呢?

  [生]是,應(yīng)為p= (S>0).

  做一做

  1、蓄電池的電壓為定值,使用此電源時(shí),電流I(A)與電阻R(Ω)之間的函數(shù)關(guān)系如下圖;

  (1)蓄電池的電壓是多少?你能寫出這一函數(shù)的表達(dá)式嗎?

  (2)完成下表,并回答問題:如果以此蓄電池為電源的用電器限制電流不得超過 10A,那么用電器的可變電阻應(yīng)控制在什么范圍內(nèi)?

  [師]從圖形上來看,I和R之間可能是反比例函數(shù)關(guān)系.電壓U就相當(dāng)于反比例函數(shù)中的k.要寫出函數(shù)的表達(dá)式,實(shí)際上就是確定k(U),只需要一個(gè)條件即可,而圖中已給出了一個(gè)點(diǎn)的坐標(biāo),所以這個(gè)問題就解決了,填表實(shí)際上是已知自變量求函數(shù)值.

  [生]解:(1)由題意設(shè)函數(shù)表達(dá)式為I=

  ∵A(9,4)在圖象上,

  ∴U=IR=36

  ∴表達(dá)式為I=

  蓄電池的電壓是36伏

  (2)表格中從左到右依次是:12,9,7.2,6,4.5,3.6

  電源不超過 10 A,即I最大為 10 A,代入關(guān)系式中得R=3.6,為最小電阻,所以用電器的可變電阻應(yīng)控制在R≥3.6這個(gè)范圍內(nèi)

  2、如下圖,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=的圖象相交于A,B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(,2)

  (1)分別寫出這兩個(gè)函數(shù)的表達(dá)式:

  (2)你能求出點(diǎn)B的坐標(biāo)嗎?你是怎樣求的?與同伴進(jìn)行交流

  [師]要求這兩個(gè)函數(shù)的表達(dá)式,只要把A點(diǎn)的坐標(biāo)代入即可求出k1,k2,求點(diǎn)B的

  坐標(biāo)即求y=k1x與y=的交點(diǎn)

  [生]解:(1)∵A(,2)既在y=k1x圖象上,又在y=的圖象上

  ∴k1=2,2=

  ∴k1=2,k2=6

  ∴表達(dá)式分別為y=2x,y=

  ∴x2=3

  ∴x=±

  當(dāng)x= ?時(shí),y= ?2

  ∴B(?,?2)

 、.課堂練習(xí)

  1.某蓄水池的排水管每時(shí)排水 8 m3,6 h可將滿池水全部排空

  (1)蓄水池的容積是多少?

  (2)如果增加排水管,使每時(shí)的排水量達(dá)到Q(m3),那么將滿池水排空所需的時(shí)間t(h)將如何變化?

  (3)寫出t與Q之間的關(guān)系式;

  (4)如果準(zhǔn)備在5 h內(nèi)將滿池水排空,那么每時(shí)的排水量至少為多少?

  (5)已知排水管的最大排水量為每時(shí) 12m3,那么最少多長(zhǎng)時(shí)間可將滿池水全部排空?

  解:(1)8×6=48(m3)

  所以蓄水池的容積是 48 m3

  (2)因?yàn)樵黾优潘,使每時(shí)的排水量達(dá)到Q(m3),所以將滿池水排空所需的時(shí)間t(h)將減少.

  (3)t與Q之間的關(guān)系式為t=

  (4)如果準(zhǔn)備在5 h內(nèi)將滿池水排空,那么每時(shí)的排水量至少為=9.6(m3)

  (5)已知排水管的最大排水量為每時(shí) 12m3,那么最少要=4小時(shí)可將滿池水全部排空.

 、、課時(shí)小結(jié)

  節(jié)課我們學(xué)習(xí)了反比例函數(shù)的應(yīng)用.具體步驟是:認(rèn)真分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而用反比例函數(shù)的有關(guān)知識(shí)解決實(shí)際問題.

 、跽n后作業(yè)

  習(xí)題5.4.

  板書設(shè)計(jì)

  § 5.3反比例函數(shù)的應(yīng)用

  一、1.例題講解

  2.做一做

  二、課堂練習(xí)

  三、課時(shí)小節(jié)

  四、課后作業(yè)(習(xí)題5.4)

【《反比例》數(shù)學(xué)教案】相關(guān)文章:

《反比例》數(shù)學(xué)教案02-17

數(shù)學(xué)教案-成反比例的量05-02

數(shù)學(xué)教案-正、反比例的意義05-02

數(shù)學(xué)教案-反比例函數(shù)及其圖象05-02

數(shù)學(xué)教案-正比例和反比例的比較05-02

反比例04-30

《反比例》教案04-24

反比例教案04-25

《反比例》教學(xué)反思09-27

《反比例》教案定稿04-24