久久99热66热这里只有精品,特黄特色的大片在线观看,亚洲日本三级在线观看,国产三级农村妇女在线,亚洲av毛片免费在线观看,哺乳叫自慰在线看,天天干美女av网

高二數(shù)學(xué)教案

時間:2023-06-12 06:56:16 數(shù)學(xué)教案 我要投稿

高二數(shù)學(xué)教案14篇

  作為一位優(yōu)秀的人民教師,常常需要準(zhǔn)備教案,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。教案應(yīng)該怎么寫呢?下面是小編為大家收集的高二數(shù)學(xué)教案,僅供參考,大家一起來看看吧。

高二數(shù)學(xué)教案14篇

  高二數(shù)學(xué)教案 篇1

  ●三維目標(biāo)

  (1)知識與技能:

  掌握歸納推理的技巧,并能運(yùn)用解決實際問題。

  (2)過程與方法:

  通過“自主、合作與探究”實現(xiàn)“一切以學(xué)生為中心”的理念。

  (3)情感、態(tài)度與價值觀:

  感受數(shù)學(xué)的人文價值,提高學(xué)生的學(xué)習(xí)興趣,使其體會到數(shù)學(xué)學(xué)習(xí)的美感。

  ●教學(xué)重點

  歸納推理及方法的總結(jié)。

  ●教學(xué)難點

  歸納推理的.含義及其具體應(yīng)用。

  ●教具準(zhǔn)備

  與教材內(nèi)容相關(guān)的資料。

  ●課時安排

  1課時

  ●教學(xué)過程

  一.問題情境

  (1)原理初探

 、僖耄骸鞍⒒椎略鴮跽f,給我一個支點,我將撬起整個地球!”

  ②提問:大家認(rèn)為可能嗎?他為何敢夸下如此??理由何在?

  ③探究:他是怎么發(fā)現(xiàn)“杠桿原理”的?

  從而引入兩則小典故:

  A:一個小孩,為何輕輕松松就能提起一大桶水?

  B:修筑河堤時,奴隸們是怎樣搬運(yùn)巨石的?

  高二數(shù)學(xué)教案 篇2

  教學(xué)目標(biāo):

  通過生動有趣的“數(shù)學(xué)樂園”活動,使學(xué)生加深對10以內(nèi)數(shù)的認(rèn)識,進(jìn)一步鞏固10以內(nèi)的加減法,充分感受數(shù)學(xué)與日常生活的密切聯(lián)系。使學(xué)生在理解和掌握知識的同時,感受到學(xué)習(xí)數(shù)學(xué)的樂趣,提高學(xué)習(xí)數(shù)學(xué)的興趣。教學(xué)準(zhǔn)備:

  1.?dāng)?shù)字迷宮圖十幅,信箱四個,口算卡片40張

  2.自制教學(xué)課件,教室場景布置,學(xué)生坐成4行。

  教學(xué)過程:

  一、導(dǎo)入:小朋友們,今天老師帶大家到“數(shù)學(xué)樂園”去玩(老師指“數(shù)學(xué)樂園”場景布置)。大家想不想去呀可是在“數(shù)學(xué)樂園”的門口有四個信箱,需要每個小朋友當(dāng)一回“小小郵遞員”,把“數(shù)字娃娃”藏在你們抽屜里的“信”送到正確的信箱里,就能進(jìn)人數(shù)學(xué)樂園,大家有沒有信心

  二、活動送信游戲

  1.分組送信。教室講臺上放四個標(biāo)有數(shù)字的信箱,老師問:怎樣才能把“信”送到正確的信箱里呢只要把“信”(即口算卡片)上的題目得數(shù)算出來,得數(shù)是幾,就把“信”送到標(biāo)有這個數(shù)的信箱里。每個學(xué)生從抽屜里拿出一封“信”(即口算卡片),在音樂聲中分組走上講臺送“信”。注意:有的卡片上面的得數(shù)不是信箱的標(biāo)號,是沒法送出的信。對于沒有送出的信,讓學(xué)生說說為什么送不出去。

  2.檢查送信游戲的正確性。學(xué)生投完信后,老師把四個信箱分發(fā)到四個小組(課前學(xué)生坐成四行),由小組長主持檢查每個信箱里的口算卡片是否送對了,學(xué)生做手勢表示對錯進(jìn)行檢查,看有沒有送錯的信。對于送錯的信,讓學(xué)生說說為什么送錯了。各組檢查完后,小組長向老師匯報檢查結(jié)果。

  三、活動二起立游戲

  好啊,我們進(jìn)人數(shù)學(xué)樂園啦!看,數(shù)學(xué)樂園里有很多小動物在等著我們呢!老師出示包括乖乖虎、皮卡丘、機(jī)器貓的畫面(課件),你們喜歡它們嗎讓學(xué)生分組選擇喜歡的小動物。全班坐成四行,每行10人,各行報數(shù)(同時進(jìn)行)。

  老師根據(jù)學(xué)生的選擇點擊小動物圖案,出示下列四題:

  1.請這一組的前面四個小朋友站起來。請第四個小朋友拍四下手。從前往后數(shù)你是第幾個從后往前數(shù)你是第幾個

  2.請從前往后數(shù)第五個小朋友站起來,:你前面有幾個小朋友后面有幾個小朋友你這一組有幾個小朋友你是怎么知道的

  3.請從前往后數(shù)第六個小朋友站起來。不許往后看,你知道你后面有幾個小朋友嗎你是怎么知道的

  4.請從后往前數(shù)第二個小朋友站起來。你這一組有幾個男孩有幾個女孩合起來一共有幾個小朋友你是怎么知道的

  四、活動三數(shù)字迷宮

  前后左右四人為一個小組,每組發(fā)“數(shù)字迷宮”圖一幅。說明:“數(shù)字迷宮”有一個人口,兩個出口,由數(shù)字1-9組成,從人口到出口必須按1、2、3、……9的順序走。四個小朋友討論不同的路線,用不同顏色的水彩筆畫出路線圖,比一比看哪組想的路線最多畫完后,分組統(tǒng)計出本組所畫路線的條數(shù),用水彩筆寫在圖的右下角,然后與別組交換統(tǒng)計路線的條數(shù)。

  老師把每組的迷宮圖貼在黑板上進(jìn)行評比,小黑板上出示條形統(tǒng)計圖的網(wǎng)格.每組組長上臺,根據(jù)本組畫的條數(shù)的多少,用小正方形貼出直條。

  全班看圖討論下列問題:看___組想出的路線最多,第一名是二___組,畫了___種方法;第二名是___組,畫了___種方法;第三名是___組,畫了___種方法;一組和___組畫的同樣多;___組比___組多畫___條;___組比___組少畫___條;

  五、總結(jié):

  今天,大家在“數(shù)學(xué)樂園”里玩得開不開心在我們玩的游戲中運(yùn)用了前面所學(xué)的10以內(nèi)數(shù)的認(rèn)識和加減法的知識。以后我們學(xué)會了更多的知識,老師再帶大家到“數(shù)學(xué)樂園”里來玩。

  評析:

  在這篇教學(xué)設(shè)計中我們看到新課程理念的存在,并感受到它的沖擊力。新課程不再過分注重知識的傳授,學(xué)生獲得知識與技能的過程同時成為學(xué)會學(xué)習(xí)和形成正確價值觀的過程。不再過分強(qiáng)調(diào)學(xué)科本位,不再偏重書本知識,加強(qiáng)了課程內(nèi)容與學(xué)生生活以及現(xiàn)代社會發(fā)展的聯(lián)系,關(guān)注學(xué)生的學(xué)習(xí)興趣和經(jīng)驗,注重學(xué)生終身學(xué)習(xí)必備的基礎(chǔ)知識和技能,同時更為關(guān)注學(xué)生在情感、態(tài)度、價值觀和一般能力等全面發(fā)展。倡導(dǎo)學(xué)生主動參與,樂于探究,勤于動手,培養(yǎng)學(xué)生搜集和處理信息的能力,分析和解決問題的'能力,以及交流、合作的能力。

  數(shù)學(xué)活動課是集知識性、趣味性和娛樂性于一體的課程,它重在學(xué)生參與,重在學(xué)生實踐,旨在鞏固知識、運(yùn)用知識。在這里,數(shù)學(xué)得到了升華。數(shù)學(xué)的教育功能得到充分的體現(xiàn)。課程標(biāo)準(zhǔn)指出:“隨著社會的發(fā)展,‘終身學(xué)習(xí)’和‘持續(xù)、和諧發(fā)展’等教育理念進(jìn)一步得到人們的認(rèn)同,數(shù)學(xué)教育觀面臨著重大變革,作為教育內(nèi)容的數(shù)學(xué),有著自身的特點與規(guī)律,它的基本出發(fā)點是促進(jìn)學(xué)生的發(fā)展。因此,義務(wù)教育階段數(shù)學(xué)課程不僅要考慮數(shù)學(xué)自身的特點,而且更應(yīng)當(dāng)遵循學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律,關(guān)注每一個學(xué)生在情感態(tài)度,思維能力,自我意識等多方面的進(jìn)步和發(fā)展!蔽蚁,這篇教學(xué)設(shè)計,對課程標(biāo)準(zhǔn)中的基本理念作了最好的解讀。課堂教學(xué)從課內(nèi)延伸到課外,從只注重學(xué)生知識結(jié)構(gòu)的培養(yǎng)和認(rèn)知圖式的建構(gòu),到關(guān)注學(xué)生的具體生活和直接經(jīng)驗,并真正地深入學(xué)生的精神世界,從而使教學(xué)活動的基礎(chǔ)性,發(fā)展性和創(chuàng)造性達(dá)到了統(tǒng)一,體現(xiàn)了“學(xué)習(xí)不是為了‘占有’別人的知識,而是為了‘生長’自己的知識”這種現(xiàn)代教育觀。由此我們也看到了新課程強(qiáng)大的生命力,它正在促進(jìn)學(xué)生有意義的學(xué)習(xí)方式和轉(zhuǎn)變教師的教學(xué)行為。促進(jìn)學(xué)生和教師共同成長。

  我所執(zhí)教的這節(jié)一年級《數(shù)學(xué)樂園》活動課除體現(xiàn)了以上宗旨外,還具備以下幾個特點:

  1、以游戲為主線,層層遞進(jìn)。隨著時代的發(fā)展,教育面臨的挑戰(zhàn),各國都在進(jìn)行教學(xué)改革,其重心就是探討“樂學(xué)”,提高教學(xué)效率。游戲教學(xué)在貫注“樂學(xué)”思想方面是獨(dú)領(lǐng)風(fēng)騷的。它依據(jù)教學(xué)內(nèi)容創(chuàng)設(shè)情境,就是為了從根本上解決學(xué)生的“樂學(xué)”問題。教學(xué)游戲,是學(xué)生樂于學(xué)習(xí)之“源”。在這個“源”中,既有學(xué)生看得見、摸得著的實體形象,喚起學(xué)生學(xué)習(xí)的愉悅;又展現(xiàn)了學(xué)習(xí)的智力背景,鼓舞學(xué)生自動求知。它有感性認(rèn)識的堅實基礎(chǔ),也有促使學(xué)生理性認(rèn)識的橋梁;它調(diào)動學(xué)生智力因素與非智力因素的積極參與,也有著學(xué)生生理感官與心理需求的快樂與滿足。它調(diào)動與調(diào)節(jié)學(xué)生左、右腦同時投人學(xué)習(xí),激發(fā)學(xué)生以情感需要為核心的一切生理和心理上的因素,以此推動學(xué)生認(rèn)真學(xué)習(xí),順利開展認(rèn)知活動。教學(xué)開始,便以“玩”導(dǎo)人,先“玩”“送信游戲”,再“玩”“起立游戲”,接著“玩”走“數(shù)字迷宮”,最后結(jié)束時還許諾下次帶學(xué)生到“數(shù)學(xué)樂園”里來玩。這一系列的“玩”做到了有序牽引,層層遞進(jìn),激發(fā)了學(xué)生的“玩興”,愉快而輕松地復(fù)習(xí)了10以內(nèi)數(shù)的有關(guān)知識,真正做到了寓教于樂,寓學(xué)于樂,“樂”在活動中。

  2、以學(xué)生為主體,人人參與。皮亞杰認(rèn)為:兒童學(xué)習(xí)的最根本途徑應(yīng)該是活動;顒邮锹(lián)系主客觀的橋梁,是認(rèn)識發(fā)展的直接源泉。因此教師在課堂教學(xué)中要改變那種重教法、輕學(xué)法的狀況,加強(qiáng)對學(xué)生學(xué)法的指導(dǎo)。在課堂上要給學(xué)生提供豐富的、充足的、典型的、較為完整的感性材料,有目的地創(chuàng)設(shè)學(xué)生活動的空間,調(diào)動學(xué)生的多種感官,放手讓學(xué)生動手、動口、動腦全方位參與教學(xué)活動。使學(xué)生在生動活潑的實踐中去發(fā)現(xiàn)、認(rèn)識、理解、掌握所學(xué)知識,發(fā)展自己的認(rèn)知結(jié)構(gòu)。在教學(xué)中,把抽象的數(shù)學(xué)知識同具體的實物結(jié)合起來,化難為易,化抽象為具體。而活動課,更應(yīng)讓全體學(xué)生“動”起來,做到人人參與,這節(jié)課便體現(xiàn)了這一點。第一個活動,全班學(xué)生參與“投信”,立即形成了熱烈的氣氛,學(xué)生的興奮情緒受到激發(fā)。在第二個活動中,雖不是人人火爆,但做到了:一人表演,全班監(jiān)督;一組參與,全班評價。第三個活動,處于“靜態(tài)”的活動中,全班分組,人人以“筆”代“走”,畫出走迷宮的路線。這樣,這節(jié)課的學(xué)生參與率為百分之百,做到了參與內(nèi)容廣,參與時間長,教學(xué)效果好。

  3、以知識為主流,面面俱到;顒诱n僅只是一種課堂形式,其內(nèi)容才是活動課的實質(zhì)。這節(jié)課為加深學(xué)生對10以內(nèi)數(shù)的有關(guān)概念和計算的認(rèn)識,把有關(guān)知識有機(jī)地、有序地分布在每個游戲中。第一個送信游戲,以計算為主,根據(jù)計算結(jié)果選擇對應(yīng)的信箱,一部分“死信”(結(jié)果無對應(yīng)信箱)需作出不可投的判斷,對誤投的要訂正處理,對投信的質(zhì)量全班作出評價。第二個活動,巧妙地把前面與后面的位置問題、基數(shù)與序數(shù)的問題、加法和連加的問題,都安排在直觀的對比中和活動的氛圍中進(jìn)行處理和鞏固。第三個活動是知識的綜合性運(yùn)用,以順序的認(rèn)識為根本,走出不同的路線,認(rèn)識不變中有變,并輔以簡單的統(tǒng)計,復(fù)習(xí)最多與最少、同樣多與多(少)幾。這三個活動中的每個環(huán)節(jié),都孕伏了所學(xué)的知識。在活動中,大容量的復(fù)習(xí)鞏固已學(xué)過的知識。

  4、以媒體為主向,項項直觀;顒诱n是一種實踐,實踐需要媒體、需要直觀,這一節(jié)課充分的體現(xiàn)了媒體和直觀。執(zhí)教者首先考慮了活動課的氛圍,精心布置了場景,使學(xué)生親臨其境;其次,打破教室組織結(jié)構(gòu),去掉桌子,改坐四行,給學(xué)生一種新鮮感;第三,準(zhǔn)備了不少實物道具,讓學(xué)生實際操作,調(diào)動了學(xué)生的積極性;第四,執(zhí)教者精心設(shè)計制作了電腦軟件,其形式和形狀都新穎、可愛,使學(xué)生在現(xiàn)代媒體中接受“美”的教育。

  總之,這是一節(jié)生動活潑、情趣盎然、充分體現(xiàn)課程改革理念的低年級數(shù)學(xué)活動課。

  高二數(shù)學(xué)教案 篇3

  [教學(xué)目標(biāo)]

  1.知識與技能目標(biāo):掌握等差數(shù)列的概念;理解等差數(shù)列的通項公式的推導(dǎo)過程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項公式解決相應(yīng)的一些問題。

  2.過程與方法目標(biāo):讓學(xué)生親身經(jīng)歷“從特殊入手,研究對象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過階梯性的強(qiáng)化練習(xí),培養(yǎng)學(xué)生分析問題解決問題的能力。

  3.情感態(tài)度與價值觀目標(biāo):通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生逐步養(yǎng)成細(xì)心觀察、認(rèn)真分析、及時總結(jié)的好習(xí)慣。

  [教學(xué)重難點]感

  1.教學(xué)重點:等差數(shù)列的概念的理解,通項公式的推導(dǎo)及應(yīng)用。

  2.教學(xué)難點:(1)對等差數(shù)列中“等差”兩字的把握;

  (2)等差數(shù)列通項公式的推導(dǎo)。

  [教學(xué)過程]

  一、課題引入

  創(chuàng)設(shè)情境引入課題:(這節(jié)課我們將學(xué)習(xí)一類特殊的數(shù)列,下面我們看這樣一些例子)

  (1)、在過去的`三百多年里,人們分別在下列時間里觀測到了哈雷慧星:

  1682,1758,1834,1910,1986,()

  你能預(yù)測出下次觀測到哈雷慧星的大致時間嗎?判斷的依據(jù)是什么呢?

  (2)、通常情況下,從地面到11km的高空,氣溫隨高度的變化而變化符合一定的規(guī)律,請你根據(jù)下表估計一下珠穆朗瑪峰峰頂?shù)臏囟取?/p>

  (3)1,4,7,10,(),16,…

  (4)2,0,-2,-4,-6,(),…

  它們共同的規(guī)律是?

  從第二項起,每一項與前一項的差等于同一個常數(shù)。

  我們把有這一特點的數(shù)列叫做等差數(shù)列。

  二、新課探究

  (一)等差數(shù)列的定義

  1、等差數(shù)列的定義

  如果一個數(shù)列從第二項起,每一項與前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

  (1)定義中的關(guān)健詞有哪些?

  (2)公差d是哪兩個數(shù)的差?

  2、等差數(shù)列定義的數(shù)學(xué)表達(dá)式:

  試一試:它們是等差數(shù)列嗎?

  (1)1,3,5,7,9,2,4,6,8,10…

  (2)5,5,5,5,5,5,…

  (3)-1,-3,-5,-7,-9,…

  (4)數(shù)列{an},若an+1-an=3

  3、等差中頂定義

  在如下的兩個數(shù)之間,插入一個什么數(shù)后這三個數(shù)就會成為一個等差數(shù)列:

  (1)、2,(),4(2)、-12,(),0(3)a,(),b

  如果在a與b中間插入一個數(shù)A,使a,A,b成等差數(shù)列,那么A叫做a與b的等差中項。

  (二)等差數(shù)列的通項公式

  探究1:等差數(shù)列的通項公式(求法一)

  如果等差數(shù)列首項是,公差是,那么這個等差數(shù)列如何表示?呢?

  根據(jù)等差數(shù)列的定義可得:

  所以:

  由此得,因此等差數(shù)列的通項公式就是:,

  三、應(yīng)用與探索

  例1、(1)求等差數(shù)列8,5,2,…,的第20項。

  (2)等差數(shù)列-5,-9,-13,…,的第幾項是–401?

  (2)、分析:要判斷-401是不是數(shù)列的項,關(guān)鍵是求出通項公式,并判斷是否存在正整數(shù)n,使得成立,實質(zhì)上是要求方程的正整數(shù)解。

  例2、在等差數(shù)列中,已知=10,=31,求首項與公差d.

  解:由,得。

  在應(yīng)用等差數(shù)列的通項公式an=a1+(n-1)d過程中,對an,a1,n,d這四個變量,知道其中三個量就可以求余下的一個量,這是一種方程的思想。

  鞏固練習(xí)

  1.等差數(shù)列{an}的前三項依次為a-6,-3a-5,-10a-1,則a=()。

  A.1B.-1C.-2D.2

  2.一張?zhí)葑右患墝?3cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。求公差d。

  四、小結(jié)

  1.等差數(shù)列的通項公式:

  公差;

  2.等差數(shù)列的計算問題,通常知道其中三個量就可以利用通項公式an=a1+(n-1)d,求余下的一個量;

  3.判斷一個數(shù)列是否為等差數(shù)列只需看是否為常數(shù)即可;

  4.利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學(xué)系規(guī)律或解決數(shù)學(xué)問題。

  五、作業(yè):

  1、必做題:課本第40頁習(xí)題2.2第1,3,5題

  高二數(shù)學(xué)教案 篇4

  教學(xué)內(nèi)容:冀教版義務(wù)教育課程標(biāo)準(zhǔn)試驗教科書一年級下冊86~87頁兩位數(shù)減一位數(shù)(退位)

  教材分析:本課通過"孫悟空請客"的情境引出新課34-8,激發(fā)起學(xué)生的學(xué)習(xí)興趣。再組織學(xué)生動手?jǐn)[小棒試算,小組討論交流擺、試算的過程及方法,充分發(fā)揮學(xué)生的主體作用;"師徒改造花果山",培養(yǎng)學(xué)生自學(xué)用豎式計算的能力;"唐僧、八戒、沙僧植樹,綠化花果山",鞏固知識。

  學(xué)生分析:100以內(nèi)的兩位數(shù)減一位數(shù)的退位減法是在學(xué)習(xí)20以內(nèi)的兩位數(shù)減一位數(shù)的退位減法后進(jìn)行的,學(xué)生已經(jīng)對兩位數(shù)減一位數(shù)的退位減法有一定的知識基礎(chǔ),掌握了退位減法的算理。本班多數(shù)學(xué)生對兩位數(shù)減一位數(shù)的'退位減法是容易接受的。

  設(shè)計理念:激趣引入新課,以"孫悟空請客",為情境引入新課提高了學(xué)生的興趣。以學(xué)生自主探究新知為主要學(xué)習(xí)方式,學(xué)生擺小棒,自學(xué)豎式計算的方法,為學(xué)生提供了積極思考、自主探究的空間。

  德育目標(biāo):對學(xué)生進(jìn)行環(huán)境保護(hù)教育,增強(qiáng)保護(hù)環(huán)境意識。

  知識目標(biāo):

 。、在操作、試算的過程中,學(xué)習(xí)兩位數(shù)減一位數(shù)(退位)的計算方法。

  2、學(xué)會用豎式計算兩位數(shù)減一位數(shù)(退位),理解"個位不夠減從十位借1再減的道理。

  能力目標(biāo):培養(yǎng)學(xué)生動手、動口、動腦的能力。

  教學(xué)重點:掌握兩位數(shù)減一位數(shù)(退位)的計算方法。學(xué)會用豎式計算。

  教學(xué)難點:理解"個位不夠減,從十位借1再減的道理。

  教學(xué)方法:操作法、直觀演示法、自學(xué)法、討論法

  教具:投影片、學(xué)具:小棒、卡片

  板書設(shè)計(略)

  教學(xué)過程:

  一、情境引入

  1 、情境引入"孫悟空請客""34-8"

  師:今天,我給同學(xué)們講一個西游記后轉(zhuǎn)的故事:

  孫悟空回到花果山,時間久了,想請師傅和師弟聚聚。于是打電話讓師傅和師弟星期天來花果山。星期天唐僧、八戒、沙僧到了。花果山一片荒涼,水簾洞也只有斷斷續(xù)續(xù)的幾滴水。一打聽,孫悟空為掙錢,開了鐵礦,破壞了環(huán)境,毀壞不少山林。

  孫悟空去果園里摘桃子,他只摘了34個桃子,豬八戒吃了8個

  唐僧給沙僧提出一個問題:34個桃子,八戒吃了8個,還剩幾個桃子?

  師:你能幫沙僧算算嗎?怎樣列算式

  生:34-8

  師:同學(xué)們真聰明!同時教師板書34-8

  2 、學(xué)生通過擺小棒試算出結(jié)果(學(xué)生操作,教師巡視)

  全班交流自己是怎樣擺小棒的?赡苡幸韵聝煞N算法㈠從34里拿出14,14減8得6,20加6得26。㈡從34里拿出10,10減8得2,24加2得26。教師板書(略)

  3 、豎式計算

  讓學(xué)生自學(xué)用豎式計算的方法。學(xué)生自學(xué),教師巡回指導(dǎo)。

  4 、學(xué)生匯報自學(xué)結(jié)果及發(fā)現(xiàn)的問題,教師隨學(xué)生匯報的自學(xué)結(jié)果。板書略。

  重點理解十位數(shù)字上的重點符號表示退位。引出個位不夠減,從十位借一再減的計算方法。

  二、嘗試練習(xí)

  投影出示87頁"試一試"61-942-794-6學(xué)生獨(dú)立計算同桌討論交流。

  三、八戒贈樹知識應(yīng)用

  孫悟空覺得很沒面子,就再次去果園,唐僧、八戒、沙僧隨后。到了果園一看,桃樹38棵,干枯了9棵,蘋果樹43棵,干枯了6棵,杏樹80棵,干枯了7棵。同學(xué)們算算,桃樹還剩幾棵?蘋果樹還剩幾棵?杏樹還活幾棵?

 。、38-943-680-7

  指3名學(xué)生板演,其他學(xué)生練習(xí)本上做,做完后集體訂正。

  八戒直搖頭:"可惜,可惜。我雖然好吃懶做,但我把取經(jīng)途中的遇到的好的果樹移植到我家,經(jīng)過這幾年培育,都成了優(yōu)良品種,如不嫌棄,我送你幾棵,改良一下你這里的品種。也防止沙土流失,還花果山本來面目,順便也嘗嘗我的水果" 。

  2、還需植多少棵樹?

  師:八戒打個電話,汽車?yán)鴥?yōu)良品種果樹和水果,來到花果山。于是,唐僧、八戒、沙僧、孫悟空帶領(lǐng)猴子們開始植樹。咱們幫幫孫悟空植樹,好不好?打開書看87頁第二題的圖,請你仔細(xì)觀察圖意并列式計算,重點說算法。一共55棵,已經(jīng)植了8棵,還要植幾棵?

 。场⑵穱L水果

  出示卡片,學(xué)生搶答。87頁3題。

  四、小游戲拓展延伸

  植完樹,休息一會兒,我們做個游戲。我這里有5張卡片,在黑板上貼出"2、5、7、-、=",你們桌子上也有這樣的卡片,我們用這些卡片來做一個數(shù)學(xué)游戲,你能列出幾個式子。

  游戲規(guī)則:1、用這些卡片擺成兩位數(shù)減一位數(shù)的退位減法2、同桌一組,一人擺一人算。

  全班交流,教師板書25-772-552-7

  同學(xué)們用豎式計算出結(jié)果。

  五、自主小天地

  師:唐僧、八戒、沙僧告別花果山。通過"孫悟空請客",我們學(xué)習(xí)了哪些知識?

  自己編題,寫在"自主小天地"中。

  高二數(shù)學(xué)教案 篇5

  教學(xué)目標(biāo)

  (1)使學(xué)生了解并會用二元一次不等式表示平面區(qū)域以及用二元一次不等式組表示平面區(qū)域;

 。2)了解線性規(guī)化的意義以及線性約束條件、線性目標(biāo)函數(shù)、線性規(guī)化問題、可行解、可行域以及最優(yōu)解等基本概念;

  (3)了解線性規(guī)化問題的圖解法,并能應(yīng)用它解決一些簡單的實際問題;

 。4)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的 數(shù)學(xué) 思想,提高學(xué)生“建!焙徒鉀Q實際問題的能力;

 。5)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生 學(xué)習(xí) 數(shù)學(xué) 的興趣和“用 數(shù)學(xué) ”的意識,激勵學(xué)生勇于創(chuàng)新.

  教學(xué)建議

  一、知識結(jié)構(gòu)

  教科書首先通過一個具體問題,介紹了二元一次不等式表示平面區(qū)域.再通過一個具體實例,介紹了線性規(guī)化問題及有關(guān)的幾個基本概念及一種基本解法-圖解法,并利用幾道例題說明線性規(guī)化在實際中的應(yīng)用.

  二、重點、難點分析

  本小節(jié)的重點是二元一次不等式(組)表示平面的區(qū)域.

  對學(xué)生來說,二元一次不等式(組)表示平面的區(qū)域是一個比較陌生、抽象的概念,按高二學(xué)生現(xiàn)有的知識和認(rèn)知水平難以透徹理解,因此 學(xué)習(xí) 二元一次不等式(組)表示平面的區(qū)域分為兩個大的層次:

 。1)二元一次不等式表示平面區(qū)域.首先通過建立新舊知識的聯(lián)系,自然地給出概念.明確二元一次不等式在平面直角坐標(biāo)系中表示直線某一側(cè)所有點組成的平面區(qū)域不包含邊界直線(畫成虛線).其次再擴(kuò)大到所表示的平面區(qū)域是包含邊界直線且要把邊界直線畫成實線.

 。2)二元一次不等式組表示平面區(qū)域.在理解二元一次不等式表示平面區(qū)域含義的基礎(chǔ)上,畫不等式組所表示的平面區(qū)域,找出各個不等式所表示的平面區(qū)域的`公共部分.這是學(xué)生對代數(shù)問題等價轉(zhuǎn)化為幾何問題以及 數(shù)學(xué) 建模方法解決實際問題的基礎(chǔ).

  難點是把實際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答.

  對許多學(xué)生來說,從抽象到的化歸并不比從具體到抽象遇到的問題少,學(xué)生解 數(shù)學(xué) 應(yīng)用題的最常見困難是不會將實際問題提煉成 數(shù)學(xué) 問題,即不會建模.所以把實際問題轉(zhuǎn)化為線性規(guī)劃問題作為本節(jié)的難點,并緊緊圍繞如何引導(dǎo)學(xué)生根據(jù)實際問題中的已知條件,找出約束條件和目標(biāo)函數(shù),然后利用圖解法求出最優(yōu)解作為突破這個難點的關(guān)鍵.

  對學(xué)生而言解決應(yīng)用問題的障礙主要有三類:

  ①不能正確理解題意,弄清各元素之間的關(guān)系;

 、诓荒芊智鍐栴}的主次關(guān)系,因而抓不住問題的本質(zhì),無法建立 數(shù)學(xué) 模型;

 、酃铝⒌乜紤]單個的問題情景,不能多方聯(lián)想,形成正遷移.針對這些障礙以及題目本身文字過長等因素,將本課設(shè)計為計算機(jī)輔助教學(xué),從而將實際問題鮮活直觀地展現(xiàn)在學(xué)生面前,以利于理解;分析完題后,能夠抓住問題的本質(zhì)特征,從而將實際問題抽象概括為線性規(guī)劃問題.另外,利用計算機(jī)可以較快地幫助學(xué)生掌握尋找整點最優(yōu)解的方法.

  三、教法建議

 。1)對學(xué)生來說,二元一次不等式(組)表示平面的區(qū)域是一個比較陌生的概念,不象二元一次方程表示直線那樣已早有所知,為使學(xué)生對這一概念的引進(jìn)不感到突然,應(yīng)建立新舊知識的聯(lián)系,以便自然地給出概念

 。2)建議將本節(jié)新課講授分為五步(思考、嘗試、猜想、證明、歸納)來進(jìn)行,目的是為了分散難點,層層遞進(jìn),突出重點,只要學(xué)生對舊知識掌握較好,完全有可能由學(xué)生主動去探求新知,得出結(jié)論.

  (3)要舉幾個典型例題,特別是似是而非的例子,對理解二元一次不等式(組)表示的平面區(qū)域的含義是十分必要的.

 。4)建議通過本節(jié)教學(xué)著重培養(yǎng)學(xué)生掌握“數(shù)形結(jié)合”的 數(shù)學(xué) 思想,盡管側(cè)重于用“數(shù)”研究“形”,但同時也用“形”去研究“數(shù)”,這對培養(yǎng)學(xué)生觀察、聯(lián)想、猜測、歸納等 數(shù)學(xué) 能力是大有益處的.

 。5)對作業(yè)、思考題、研究性題的建議:

 、僮鳂I(yè)主要訓(xùn)練學(xué)生規(guī)范的解題步驟和作圖能力;

 、谒伎碱}主要供學(xué)有余力的學(xué)生課后完成;

  ③研究性題綜合性較大,主要用于拓寬學(xué)生的思維.

 。6)若實際問題要求的最優(yōu)解是整數(shù)解,而我們利用圖解法得到的解為非整數(shù)解(近似解),應(yīng)作適當(dāng)?shù)恼{(diào)整,其方法應(yīng)以與線性目標(biāo)函數(shù)的直線的距離為依據(jù),在直線的附近尋求與此直線距離最近的整點,不要在用圖解法所得到的近似解附近尋找.

  如果可行域中的整點數(shù)目很少,采用逐個試驗法也可.

 。7)在線性規(guī)劃的實際問題中,主要掌握兩種類型:一是給定一定數(shù)量的人力、物力資源,問怎樣運(yùn)用這些資源能使完成的任務(wù)量最大,收到的效益最大;二是給定一項任務(wù)問怎樣統(tǒng)籌安排,能使完成的這項任務(wù)耗費(fèi)的人力、物力資源最。

  高二數(shù)學(xué)教案 篇6

  一、教學(xué)目的

  1、使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義。

  2、使學(xué)生會用描點法畫出簡單函數(shù)的圖象。

  二、教學(xué)重點、難點

  重點:

  1、理解與認(rèn)識函數(shù)圖象的意義。

  2、培養(yǎng)學(xué)生的看圖、識圖能力。

  難點:在畫圖的三個步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對應(yīng)值問題。

  三、教學(xué)過程

  復(fù)習(xí)提問

  1、函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法。)

  2、結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的'圖象?

  3、說出下列各點所在象限或坐標(biāo)軸:

  新課

  1、畫函數(shù)圖象的方法是描點法。其步驟:

 。1)列表。要注意適當(dāng)選取自變量與函數(shù)的對應(yīng)值。什么叫“適當(dāng)”?這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個關(guān)鍵點。比如畫函數(shù)y=3x的圖象,其關(guān)鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了。

  一般地,我們把自變量與函數(shù)的對應(yīng)值分別作為點的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對應(yīng)值列出表來。

 。2)描點。我們把表中給出的有序?qū)崝?shù)對,看作點的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點。

  (3)用光滑曲線連線。根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線。

  一般地,根據(jù)函數(shù)解析式,我們列表、描點是有限的幾個,只需在平面直角坐標(biāo)系中,把這有限的幾個點連成表示函數(shù)的曲線(或直線)。

  2、講解畫函數(shù)圖象的三個步驟和例。畫出函數(shù)y=x+0。5的圖象。

  小結(jié)

  本節(jié)課的重點是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個步驟,自己動手畫圖。

  練習(xí)

 、龠x用課本練習(xí)

 。ㄇ耙还(jié)已作:列表、描點,本節(jié)要求連線)

  ②補(bǔ)充題:畫出函數(shù)y=5x-2的圖象。

  作業(yè):選用課本習(xí)題。

  四、教學(xué)注意問題

  1、注意滲透數(shù)形結(jié)合思想。通過研究函數(shù)的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認(rèn)識。把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認(rèn)識函數(shù)的本質(zhì)特征。

  2、注意充分調(diào)動學(xué)生自己動手畫圖的積極性。

  3、認(rèn)識到由于計算器和計算機(jī)的普及化,代替了手工繪圖功能。故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識圖的能力。

  高二數(shù)學(xué)教案 篇7

  一、教學(xué)目標(biāo)

  本課時的教學(xué)目標(biāo)為:①借助直角坐標(biāo)系建立復(fù)平面,掌握復(fù)數(shù)的幾何形式和向量表示;②經(jīng)歷復(fù)平面上復(fù)數(shù)的“形化”過程,理解復(fù)數(shù)與復(fù)平面上的點、向量之間的一一對應(yīng)關(guān)系;③感悟數(shù)學(xué)的釋義:數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué)、筆者認(rèn)為,教學(xué)目標(biāo)總體設(shè)置得較為適切,符合三維框架、修改:“掌握復(fù)數(shù)的幾何形式和向量表示”改為“掌握在復(fù)平面上復(fù)數(shù)的點表示和向量表示”。

  二、教學(xué)重點

  本課時的教學(xué)重點為:復(fù)數(shù)的坐標(biāo)表示:幾何形式與向量表示、教學(xué)重點設(shè)置得較為適切,部分用詞表達(dá)配合教學(xué)目標(biāo)一并修改、修改:復(fù)數(shù)的坐標(biāo)表示:點表示與向量表示。

  三、教學(xué)難點

  本課時的教學(xué)難點為:復(fù)數(shù)的代數(shù)形式、幾何形式及向量表示的“同一性”、首先,“同一性”說法有待商榷,這個詞有著嚴(yán)格的定義,使用時需謹(jǐn)慎、其次,經(jīng)過思考,復(fù)數(shù)的代數(shù)表示、點表示及向量表示之間的互相轉(zhuǎn)化才是本課時的教學(xué)難點。

  四、教學(xué)過程

 。ㄒ唬╊惐纫

  本環(huán)節(jié)通過實數(shù)在數(shù)軸上的“形化”表示,類比至復(fù)數(shù),引出復(fù)數(shù)的“幾何形式”:復(fù)平面與點、但在設(shè)問中,有一提問值得商榷:實數(shù)的幾何形式是什么?此提問較為唐突,在試講課與正式課中學(xué)生均表示難以理解,原因如下、①學(xué)生最近發(fā)展區(qū)中未具備“實數(shù)的幾何形式”,②實數(shù)的幾何形式是教師引導(dǎo)學(xué)生對數(shù)的一種有高度的認(rèn)識與表達(dá),屬于理解層面、經(jīng)過思考,修改:①如何“畫”實數(shù)?;②對學(xué)生直接陳述:我們知道,每一個實數(shù)都有數(shù)軸上唯一確定的一個點和它對應(yīng);反過來,數(shù)軸上的每一個點也有唯一的一個實數(shù)和它對應(yīng)。

 。ǘ└拍钚率

  本環(huán)節(jié)給出復(fù)平面的定義及相關(guān)概念,并且?guī)椭鷮W(xué)生形成復(fù)數(shù)與復(fù)平面上點兩者間的一一對應(yīng)關(guān)系、教學(xué)設(shè)計中對概念的'注釋是:表示實數(shù)的點都在實軸上,表示純虛數(shù)的點都在虛軸上,表示虛數(shù)的點在四個象限或虛軸上,表示實數(shù)的點為原點、經(jīng)過思考,修改:表示實數(shù)的點都在實軸上、實軸上的點表示全體實數(shù);表示純虛數(shù)的點都在虛軸上、虛軸上的點表示全體純虛數(shù)與實數(shù);表示虛數(shù)的點不在實軸上;實數(shù)與原點一一對應(yīng)。

 。ㄈ├}體驗

  本環(huán)節(jié)通過三個例題體驗,落實本課時的教學(xué)重點之一:復(fù)數(shù)的坐標(biāo)表示:點表示;突破本課時的教學(xué)難點:復(fù)數(shù)的代數(shù)表示、點表示及向量表示之間的互相轉(zhuǎn)化、例題1對課本例題作了改編,此例題的設(shè)計意圖為從復(fù)平面上的點出發(fā),去表示對應(yīng)的復(fù)數(shù),并且蘊(yùn)含了計數(shù)原理中的乘法原理、值得一提的是,在課堂教學(xué)實施過程中,學(xué)生很清晰地建立起了兩者之間的轉(zhuǎn)化關(guān)系,并且使用了乘法原理、例題2的設(shè)計意圖是從復(fù)數(shù)出發(fā)去在復(fù)平面上表示對應(yīng)的點,而例題3的設(shè)計意圖是從單個復(fù)數(shù)與其在復(fù)平面上的對應(yīng)點之間的轉(zhuǎn)化到兩個復(fù)數(shù)與其在復(fù)平面上對應(yīng)點之間的互相轉(zhuǎn)化、例題2與例題3的設(shè)計符合學(xué)生的認(rèn)知規(guī)律,但是在教學(xué)過程中沒有配以圖形來幫助學(xué)生理解,這是整個教學(xué)過程中的最大不足。

 。ㄋ模└拍钐嵘

  本環(huán)節(jié)繼復(fù)數(shù)在復(fù)平面上的點表示之后,給出復(fù)數(shù)的向量表示,呈現(xiàn)了完整的復(fù)數(shù)的坐標(biāo)表示、學(xué)生已經(jīng)建構(gòu)起復(fù)數(shù)集中的復(fù)數(shù)與復(fù)平面上的點之間的一一對應(yīng)關(guān)系,結(jié)合他們的最近發(fā)展區(qū):建立了直角坐標(biāo)系的平面中的任意點均與唯一的位置向量一一對應(yīng),從而較為順利地架構(gòu)起復(fù)數(shù)與向量的一一對應(yīng)關(guān)系、設(shè)計的例題是由筆者改編的,整合了向量與復(fù)數(shù)、點與復(fù)數(shù)以及向量與點之間的互相轉(zhuǎn)化,鞏固三者之間的一一對應(yīng)關(guān)系、值得一提的是,設(shè)計的第3小問具有開放性,啟發(fā)學(xué)生去探究由向量加法的坐標(biāo)表示引出復(fù)數(shù)加法法則,在課堂教學(xué)實踐中,已有學(xué)生產(chǎn)生這樣的思考。

  在之后的教研組研評課中,老師們給出了對這節(jié)課的認(rèn)可與中肯的建議,讓筆者受益匪淺,筆者經(jīng)過思考已經(jīng)在上文中的各環(huán)節(jié)修改處得以體現(xiàn)落實、不過仍然有一點困惑,有老師提出甚至筆者備課時也有這樣的猶豫:本課時是否將下一課時“復(fù)數(shù)的!币徊⒔o出、筆者在不斷思考教材分割成兩課時的用意,結(jié)合試講與上課的兩次實踐也說明,筆者所在學(xué)校的學(xué)生更適合這樣的分割,第一課時讓學(xué)生從不同角度感受復(fù)數(shù),第二課時用模來鞏固深化復(fù)數(shù)的坐標(biāo)表示、本課時的課題是復(fù)數(shù)的坐標(biāo)表示,蘊(yùn)含了點坐標(biāo)表示與向量坐標(biāo)表示兩塊,第一課時先打開認(rèn)識的視角,第二課時通過模來深入體驗、

  當(dāng)然教無定法,根據(jù)學(xué)情、因材施教,在理解教材設(shè)計意圖的基礎(chǔ)上對教材進(jìn)行科學(xué)合理的改編也是很有必要的。

  高二數(shù)學(xué)教案 篇8

  一、教學(xué)目標(biāo)

  【知識與技能】

  能正確概述“二面角”、“二面角的平面角”的概念,會做二面角的平面角。

  【過程與方法】

  利用類比的方法推理二面角的有關(guān)概念,提升知識遷移的能力。

  【情感態(tài)度與價值觀】

  營造和諧、輕松的學(xué)習(xí)氛圍,通過學(xué)生之間,師生之間的交流、合作和評價達(dá)成共識、共享、共進(jìn),實現(xiàn)教學(xué)相長和共同發(fā)展。

  二、教學(xué)重、難點

  【重點】

  “二面角”和“二面角的平面角”的概念。

  【難點】

  “二面角的平面角”概念的形成過程。

  三、教學(xué)過程

  (一)創(chuàng)設(shè)情境,導(dǎo)入新課

  請學(xué)生觀察生活中的一些模型,多媒體展示以下一系列動畫如:

  1.打開書本的過程;

  2.發(fā)射人造地球衛(wèi)星,要根據(jù)需要使衛(wèi)星的軌道平面與地球的赤道平面成一定的角度;

  3.修筑水壩時,為了使水壩堅固耐久,須使水壩坡面與水平面成適當(dāng)?shù)慕嵌?

  引導(dǎo)學(xué)生說出書本的兩個面、水壩面與底面,衛(wèi)星軌道面與地球赤道面均是呈一定的角度關(guān)系,引出課題。

  (二)師生互動,探索新知

  學(xué)生閱讀教材,同桌互相討論,教師引導(dǎo)學(xué)生對比平面角得出二面角的概念

  平面角:平面角是從平面內(nèi)一點出發(fā)的兩條射線(半直線)所組成的圖形。

  二面角定義:從一條直線出發(fā)的兩個半面所組成的圖形,叫作二面角。這條直線叫作二面角的棱,這兩個半平面叫作二面角的面。(動畫演示)

  (2)二面角的表示

  (3)二面角的畫法

  (PPT演示)

  教師提問:一般地說,量角器只能測量“平面角”(指兩條相交直線所成的角.相應(yīng)地,我們把異面直線所成的角,直線與平面所成的角和二面角,均稱為空間角)那么,如何去度量二面角的大小呢?我們以往是如何度量某些角的?教師引導(dǎo)學(xué)生將空間角化為平面角.

  教師總結(jié):

  (1)二面角的平面角的定義

  定義:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角.

  “二面角的平面角”的定義三個主要特征:點在棱上、線在面內(nèi)、與棱垂直(動畫演示)

  大。憾娼堑拇笮】梢杂盟钠矫娼堑拇笮肀硎尽

  平面角是直角的二面角叫做直二面角。

  (2)二面角的'平面角的作法

  ①點P在棱上—定義法

 、邳cP在一個半平面上—三垂線定理法

  ③點P在二面角內(nèi)—垂面法

  (三)生生互動,鞏固提高

  (四)生生互動,鞏固提高

  1.判斷下列命題的真假:

  (1)兩個相交平面組成的圖形叫做二面角。( )

  (2)角的兩邊分別在二面角的兩個面內(nèi),則這個角是二面角的平面角。( )

  (3)二面角的平面角所在平面垂直于二面角的棱。( )

  2.作出一下面PAC和面ABC的平面角。

  (五)課堂小結(jié),布置作業(yè)

  小結(jié):通過本節(jié)課的學(xué)習(xí),你學(xué)到了什么?

  作業(yè):以正方體為模型請找出一個所成角度為四十五度的二面角,并證明。

  高二數(shù)學(xué)教案 篇9

  教學(xué)目標(biāo):

  1.了解復(fù)數(shù)的幾何意義,會用復(fù)平面內(nèi)的點和向量來表示復(fù)數(shù);了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義.

  2.通過建立復(fù)平面上的點與復(fù)數(shù)的一一對應(yīng)關(guān)系,自主探索復(fù)數(shù)加減法的幾何意義.

  教學(xué)重點:

  復(fù)數(shù)的幾何意義,復(fù)數(shù)加減法的幾何意義.

  教學(xué)難點:

  復(fù)數(shù)加減法的幾何意義.

  教學(xué)過程:

  一 、問題情境

  我們知道,實數(shù)與數(shù)軸上的點是一一對應(yīng)的,實數(shù)可以用數(shù)軸上的點來表示.那么,復(fù)數(shù)是否也能用點來表示呢?

  二、學(xué)生活動

  問題1 任何一個復(fù)數(shù)a+bi都可以由一個有序?qū)崝?shù)對(a,b)惟一確定,而有序?qū)崝?shù)對(a,b)與平面直角坐標(biāo)系中的點是一一對應(yīng)的,那么我們怎樣用平面上的點來表示復(fù)數(shù)呢?

  問題2 平面直角坐標(biāo)系中的點A與以原點O為起點,A為終點的向量是一一對應(yīng)的,那么復(fù)數(shù)能用平面向量表示嗎?

  問題3 任何一個實數(shù)都有絕對值,它表示數(shù)軸上與這個實數(shù)對應(yīng)的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應(yīng)的,我們可以給出復(fù)數(shù)的模(絕對值)的概念嗎?它又有什么幾何意義呢?

  問題4 復(fù)數(shù)可以用復(fù)平面的向量來表示,那么,復(fù)數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復(fù)數(shù)差的模有什么幾何意義?

  三、建構(gòu)數(shù)學(xué)

  1.復(fù)數(shù)的幾何意義:在平面直角坐標(biāo)系中,以復(fù)數(shù)a+bi的實部a為橫坐標(biāo),虛部b為縱坐標(biāo)就確定了點Z(a,b),我們可以用點Z(a,b)來表示復(fù)數(shù)a+bi,這就是復(fù)數(shù)的幾何意義.

  2.復(fù)平面:建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù).

  3.因為復(fù)平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應(yīng),所以我們也可以用向量來表示復(fù)數(shù)z=a+bi,這也是復(fù)數(shù)的幾何意義.

  6.復(fù)數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復(fù)數(shù)差的模就是復(fù)平面內(nèi)與這兩個復(fù)數(shù)對應(yīng)的兩點間的.距離.同時,復(fù)數(shù)加減法的法則與平面向量加減法的坐標(biāo)形式也是完全一致的.

  四、數(shù)學(xué)應(yīng)用

  例1 在復(fù)平面內(nèi),分別用點和向量表示下列復(fù)數(shù)4,2+i,-i,-1+3i,3-2i.

  練習(xí) 課本P123練習(xí)第3,4題(口答).

  思考

  1.復(fù)平面內(nèi),表示一對共軛虛數(shù)的兩個點具有怎樣的位置關(guān)系?

  2.如果復(fù)平面內(nèi)表示兩個虛數(shù)的點關(guān)于原點對稱,那么它們的實部和虛部分別滿足什么關(guān)系?

  3.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的__________條件.

  4.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)所對應(yīng)的點在虛軸上”的_____條件.

  例2 已知復(fù)數(shù)z=(m2+m-6)+(m2+m-2)i在復(fù)平面內(nèi)所對應(yīng)的點位于第二象限,求實數(shù)m允許的取值范圍.

  例3 已知復(fù)數(shù)z1=3+4i,z2=-1+5i,試比較它們模的大小.

  思考 任意兩個復(fù)數(shù)都可以比較大小嗎?

  例4 設(shè)z∈C,滿足下列條件的點Z的集合是什么圖形?

 。1)│z│=2;(2)2<│z│<3.

  變式:課本P124習(xí)題3.3第6題.

  五、要點歸納與方法小結(jié)

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.復(fù)數(shù)的幾何意義.

  2.復(fù)數(shù)加減法的幾何意義.

  3.?dāng)?shù)形結(jié)合的思想方法.

  高二數(shù)學(xué)教案 篇10

  一、學(xué)習(xí)者特征分析

  本節(jié)課內(nèi)容是面向高二下學(xué)期的學(xué)生,主要是進(jìn)行思維的訓(xùn)練。學(xué)生在高一的時候已經(jīng)學(xué)過這些數(shù)學(xué)思維方法,但是對這些知識還沒有進(jìn)行概念化的歸納和專門的訓(xùn)練。學(xué)生不知道分析法和綜合法的時候還是會用一點,以以往的經(jīng)驗,學(xué)生一旦學(xué)習(xí)概念后,反而覺得難度大,概念混淆,因此,這一教學(xué)內(nèi)容的設(shè)計是針對學(xué)生的這一情況,設(shè)計專題學(xué)習(xí)網(wǎng)站,通過學(xué)生之間經(jīng)過學(xué)習(xí),交流,課后反復(fù)思考的,進(jìn)一步深化概念的過程,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力。

  二、教學(xué)目標(biāo)

  知識與技能

  1. 體會數(shù)學(xué)思維中的分析法和綜合法;

  2. 會用分析法和綜合法去解決問題。

  過程與方法

  1. 通過對分析法綜合法的學(xué)習(xí),培養(yǎng)學(xué)生的'數(shù)學(xué)思維能力;

  2. 培養(yǎng)學(xué)生的數(shù)學(xué)閱讀和理解能力;

  3. 培養(yǎng)學(xué)生的評價和反思能力。

  情感態(tài)度與價值觀

  1. 交流、分享運(yùn)用數(shù)學(xué)思維解決問題的喜悅;

  2. 提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;

  3. 增強(qiáng)學(xué)習(xí)數(shù)學(xué)的信心。

  三、教學(xué)內(nèi)容

  本節(jié)課是數(shù)學(xué)思維訓(xùn)練專題課,專門訓(xùn)練學(xué)生利用分析法和綜合法解題。分析法在數(shù)學(xué)中特指從結(jié)果(結(jié)論)出發(fā)追溯其產(chǎn)生原因的思維方法,即執(zhí)果索因法。綜合思維方法:綜合是以已知性質(zhì)和分析為基礎(chǔ)的,從已知出發(fā)逐步推求位未知的思考方法,即執(zhí)果導(dǎo)因法。這兩種數(shù)學(xué)思維方法是數(shù)學(xué)思維方法中最基礎(chǔ)也是最重要的方法,是學(xué)生的思維訓(xùn)練的重要內(nèi)容。

  四、教學(xué)策略的設(shè)計

  1. 情境的設(shè)計

  情境描述

  情境簡要描述

  呈現(xiàn)方式

  趣味問題

  從前有個國王在處死那些犯了罪的臣子的時候,總是出一些這樣那樣的智力題給犯人做,用這種方法給那些更聰明的人一條生路,有一位正直的青年叫亞瑟,不幸得罪了國王,國王判他死罪,他所面臨的問題是:“這里有三個盒子,金盒,銀盒和鉛盒,免死金牌放在其中一個盒子內(nèi),每只盒子各寫一句話,但其中只有一句是真的,你要是猜中了免死金牌在哪個盒子里,就免你一死罪!甭斆鞯膩喩(jīng)過推理而獲知免死金牌所放的盒子,從而救了自己的命,請問亞瑟是如何推理的?

  網(wǎng)頁

  2. 教學(xué)資源的設(shè)計

  資源類型

  資源內(nèi)容簡要描述

  資源來源

  相關(guān)故事

  通過有趣的推理故事,如“推理救命的故事”,“寶藏的故事,用于激發(fā)學(xué)生的學(xué)習(xí)興趣。

  網(wǎng)上下載

  學(xué)習(xí)網(wǎng)站

  專題學(xué)習(xí)網(wǎng)站,嵌入了經(jīng)過修改適用于本課的論壇,在線測試等。

  自行制作

  3. 教學(xué)工具:計算機(jī)

  4. 教學(xué)策略:自主探究學(xué)習(xí)策略,任務(wù)驅(qū)動策略、反思策略

  5. 教學(xué)環(huán)境:網(wǎng)絡(luò)教室

  五、教學(xué)流程設(shè)計

  1、創(chuàng)設(shè)情景,吸引學(xué)生注意

  教師活動

  學(xué)生活動

  資源/工具

  設(shè)計思想

  提出“推理救命問題”

  積極思考,尋找方法

  學(xué)習(xí)網(wǎng)站

  以具有趣味性的故事入手,吸引學(xué)生的注意,點明本節(jié)課的目的。

  2、自主探究,獲取知識

  教師活動

  學(xué)生活動

  資源/工具

  設(shè)計思想

  1、初試牛刀:讓學(xué)生試做思維訓(xùn)練題。

  2、挑戰(zhàn)高考題:在高考題中充分體現(xiàn)分析法,綜合法。

  3、舉一反三:讓學(xué)生學(xué)會總結(jié)

  學(xué)以致用:

  4、把本節(jié)的方法應(yīng)用到解決數(shù)學(xué)問題中。

  積極思考,互相交流,發(fā)現(xiàn)問題,解決問題。

  學(xué)習(xí)網(wǎng)站

  1、讓學(xué)生在輕松活潑的氛圍下帶著問題,自主、積極地學(xué)習(xí),有助于培養(yǎng)學(xué)生的自我探索的能力。

  2、超級鏈接控制性好,交互性強(qiáng),可讓學(xué)生在較短的時間內(nèi)收集積累更多的信息,拓寬學(xué)生的知識面。

  3、培養(yǎng)學(xué)生收集信息、處理信息的能力。

  3、總結(jié)概念,深化概念

  教師活動

  學(xué)生活動

  資源/工具

  設(shè)計思想

  歸納本節(jié)的方法:分析法和綜合法。并指出:數(shù)學(xué)思維的訓(xùn)練不單只是一節(jié)簡單的專題課,我們的同學(xué)在平常多留心身邊事物,多思考問題,不斷提高數(shù)學(xué)思維能力。

  體會分析法和綜合法的概念,并在論壇上發(fā)表自己對概念的理解。

  學(xué)習(xí)網(wǎng)站論壇

  通過對具體問題的概念化,加深對概念的理解。

  4、自主交流,知識遷移

  教師活動

  學(xué)生活動

  資源/工具

  設(shè)計思想

  提出寶藏問題并指導(dǎo)學(xué)生利用BBs論壇進(jìn)行討論

  學(xué)生在論壇里充分地發(fā)表自己的看法

  學(xué)習(xí)網(wǎng)站論壇

  通過自主交流,增強(qiáng)分析問題的能力和解決問題的能力

  5、在線測試,評價及反饋

  教師活動

  學(xué)生活動

  資源/工具

  設(shè)計思想

  利用學(xué)習(xí)網(wǎng)站制作一些簡單的訓(xùn)練題目

  獨(dú)立完成在線的測試

  學(xué)習(xí)網(wǎng)站

  及時反饋課堂學(xué)習(xí)效果。

  6、課后任務(wù)

  教師活動

  學(xué)生活動

  資源/工具

  設(shè)計思想

  布置課后任務(wù):在網(wǎng)絡(luò)上收集推理分析的相關(guān)例子,在學(xué)習(xí)網(wǎng)站的論壇上討論。

  記錄要求,并在課后完成。

  網(wǎng)絡(luò)資源和學(xué)習(xí)網(wǎng)站

  通過課后的任務(wù)訓(xùn)練,進(jìn)一步提高學(xué)生的數(shù)學(xué)思維能力,把思維訓(xùn)練延續(xù)到課堂外。

  高二數(shù)學(xué)教案 篇11

  平面向量共線的坐標(biāo)表示

  前提條件a=(x1,y1),b=(x2,y2),其中b≠0

  結(jié)論當(dāng)且僅當(dāng)x1y2-x2y1=0時,向量a、b(b≠0)共線

  [點睛](1)平面向量共線的坐標(biāo)表示還可以寫成x1x2=y1y2(x2≠0,y2≠0),即兩個不平行于坐標(biāo)軸的共線向量的對應(yīng)坐標(biāo)成比例;

  (2)當(dāng)a≠0,b=0時,a∥b,此時x1y2-x2y1=0也成立,即對任意向量a,b都有:x1y2-x2y1=0?a∥b.

  [小試身手]

  1.判斷下列命題是否正確.(正確的`打“√”,錯誤的打“×”)

  (1)已知a=(x1,y1),b=(x2,y2),若a∥b,則必有x1y2=x2y1.()

  (2)向量(2,3)與向量(-4,-6)反向.()

  答案:(1)√(2)√

  2.若向量a=(1,2),b=(2,3),則與a+b共線的向量可以是()

  A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)

  答案:C

  3.已知a=(1,2),b=(x,4),若a∥b,則x等于()

  A.-12B.12C.-2D.2

  答案:D

  4.已知向量a=(-2,3),b∥a,向量b的起點為A(1,2),終點B在x軸上,則點B的坐標(biāo)為________.

  答案:73,0

  向量共線的判定

  [典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),則λ的值等于()

  A.12B.13C.1D.2

  (2)已知A(2,1),B(0,4),C(1,3),D(5,-3).判斷與是否共線?如果共線,它們的方向相同還是相反?

  [解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.

  法二:假設(shè)a,b不共線,則由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),從而1=2μ,2=-2μ,方程組顯然無解,即a+2b與2a-2b不共線,這與(a+2b)∥(2a-2b)矛盾,從而假設(shè)不成立,故應(yīng)有a,b共線,所以1λ=21,即λ=12.

  [答案]A

  (2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),

  ∵(-2)×(-6)-3×4=0,∴,共線.

  又=-2,∴,方向相反.

  綜上,與共線且方向相反.

  向量共線的判定方法

  (1)利用向量共線定理,由a=λb(b≠0)推出a∥b.

  (2)利用向量共線的坐標(biāo)表達(dá)式x1y2-x2y1=0直接求解.

  [活學(xué)活用]

  已知a=(1,2),b=(-3,2),當(dāng)k為何值時,ka+b與a-3b平行,平行時它們的方向相同還是相反?

  解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),

  a-3b=(1,2)-3(-3,2)=(10,-4),

  若ka+b與a-3b平行,則-4(k-3)-10(2k+2)=0,

  解得k=-13,此時ka+b=-13a+b=-13(a-3b),故ka+b與a-3b反向.

  ∴k=-13時,ka+b與a-3b平行且方向相反.

  三點共線問題

  [典例](1)已知=(3,4),=(7,12),=(9,16),求證:A,B,C三點共線;

  (2)設(shè)向量=(k,12),=(4,5),=(10,k),當(dāng)k為何值時,A,B,C三點

  共線?

  [解](1)證明:∵=-=(4,8),

  =-=(6,12),

  ∴=32,即與共線.

  又∵與有公共點A,∴A,B,C三點共線.

  (2)若A,B,C三點共線,則,共線,

  ∵=-=(4-k,-7),

  =-=(10-k,k-12),

  ∴(4-k)(k-12)+7(10-k)=0.

  解得k=-2或k=11.

  有關(guān)三點共線問題的解題策略

  (1)要判斷A,B,C三點是否共線,一般是看與,或與,或與是否共線,若共線,則A,B,C三點共線;

  (2)使用A,B,C三點共線這一條件建立方程求參數(shù)時,利用=λ,或=λ,或=λ都是可以的,但原則上要少用含未知數(shù)的表達(dá)式.

  高二數(shù)學(xué)教案 篇12

  課題:命題

  課時:001

  課型:新授課

  教學(xué)目標(biāo)

 。、知識與技能:理解命題的概念和命題的構(gòu)成,能判斷給定陳述句是否為命題,能判斷命題的真假;能把命題改寫成“若p,則q”的形式;

 。病⑦^程與方法:多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問題和解決問題的能力;

 。、情感、態(tài)度與價值觀:通過學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  教學(xué)重點與難點

  重點:命題的概念、命題的構(gòu)成

  難點:分清命題的條件、結(jié)論和判斷命題的真假

  教學(xué)過程

  一、復(fù)習(xí)回顧

  引入:初中已學(xué)過命題的知識,請同學(xué)們回顧:什么叫做命題?

  二、新課教學(xué)

  下列語句的表述形式有什么特點?你能判斷他們的真假嗎?

 。1)若直線a∥b,則直線a與直線b沒有公共點.

 。2)2+4=7.

 。3)垂直于同一條直線的兩個平面平行.

 。4)若x2=1,則x=1.

 。5)兩個全等三角形的面積相等.

  (6)3能被2整除.

  討論、判斷:學(xué)生通過討論,總結(jié):所有句子的表述都是陳述句的形式,每句話都判斷什么事情。其中(1)(3)(5)的判斷為真,(2)(4)(6)的判斷為假。

  教師的引導(dǎo)分析:所謂判斷,就是肯定一個事物是什么或不是什么,不能含混不清。

  抽象、歸納:

  1、命題定義:一般地,我們把用語言、符號或式子表達(dá)的,可以判斷真假的陳述句叫做命題.

  命題的定義的要點:能判斷真假的陳述句.

  在數(shù)學(xué)課中,只研究數(shù)學(xué)命題,請學(xué)生舉幾個數(shù)學(xué)命題的例子.教師再與學(xué)生共同從命題的定義,判斷學(xué)生所舉例子是否是命題,從“判斷”的角度來加深對命題這一概念的理解.

  例1:判斷下列語句是否為命題?

 。1)空集是任何集合的子集.

 。2)若整數(shù)a是素數(shù),則是a奇數(shù).

 。3)指數(shù)函數(shù)是增函數(shù)嗎?

 。4)若平面上兩條直線不相交,則這兩條直線平行.

 。5)=-2.

  (6)x>15.

  讓學(xué)生思考、辨析、討論解決,且通過練習(xí),引導(dǎo)學(xué)生總結(jié):判斷一個語句是不是命題,關(guān)鍵看兩點:第一是“陳述句”,第二是“可以判斷真假”,這兩個條件缺一不可.疑問句、祈使句、感嘆句均不是命題.

  解略。

  引申:以前,同學(xué)們學(xué)習(xí)了很多定理、推論,這些定理、推論是否是命題?同學(xué)們可否舉出一些定理、推論的例子來看看?

  通過對此問的思考,學(xué)生將清晰地認(rèn)識到定理、推論都是命題.

  過渡:同學(xué)們都知道,一個定理或推論都是由條件和結(jié)論兩部分構(gòu)成(結(jié)合學(xué)生所舉定理和推論的例子,讓學(xué)生分辨定理和推論條件和結(jié)論,明確所有的定理、推論都是由條件和結(jié)論兩部分構(gòu)成)。緊接著提出問題:命題是否也是由條件和結(jié)論兩部分構(gòu)成呢?

  2、命題的構(gòu)成――條件和結(jié)論

  定義:從構(gòu)成來看,所有的命題都具由條件和結(jié)論兩部分構(gòu)成.在數(shù)學(xué)中,命題常寫成“若p,則q”或者“如果p,那么q”這種形式,通常,我們把這種形式的命題中的p叫做命題的條件,q叫做命題結(jié)論.

  例2:指出下列命題中的條件p和結(jié)論q,并判斷各命題的真假.

 。ǎ保┤粽麛(shù)a能被2整除,則a是偶數(shù).

 。ǎ玻┤羲倪呅惺橇庑,則它的對角線互相垂直平分.

 。ǎ常┤鬭>0,b>0,則a+b>0.

 。ǎ矗┤鬭>0,b>0,則a+b<0.

  (5)垂直于同一條直線的兩個平面平行.

  此題中的`(1)(2)(3)(4),較容易,估計學(xué)生較容易找出命題中的條件p和結(jié)論q,并能判斷命題的真假。其中設(shè)置命題(3)與(4)的目的在于:通過這兩個例子的比較,學(xué)更深刻地理解命題的定義——能判斷真假的陳述句,不管判斷的結(jié)果是對的還是錯的。

  此例中的命題(5),不是“若P,則q”的形式,估計學(xué)生會有困難,此時,教師引導(dǎo)學(xué)生一起分析:已知的事項為“條件”,由已知推出的事項為“結(jié)論”.

  解略。

  過渡:從例2中,我們可以看到命題的兩種情況,即有些命題的結(jié)論是正確的,而有些命題的結(jié)論是錯誤的,那么我們就有了對命題的一種分類:真命題和假命題.

  3、命題的分類

  真命題:如果由命題的條件P通過推理一定可以得出命題的結(jié)論q,那么這樣的命題叫做真命題.

  假命題:如果由命題的條件P通過推理不一定可以得出命題的結(jié)論q,那么這樣的命題叫做假命題.

  強(qiáng)調(diào):

  (1)注意命題與假命題的區(qū)別.如:“作直線AB”.這本身不是命題.也更不是假命題.

 。ǎ玻┟}是一個判斷,判斷的結(jié)果就有對錯之分.因此就要引入真命題、假命題的的概念,強(qiáng)調(diào)真假命題的大前提,首先是命題。

  判斷一個數(shù)學(xué)命題的真假方法:

 。ǎ保⿺(shù)學(xué)中判定一個命題是真命題,要經(jīng)過證明.

  (2)要判斷一個命題是假命題,只需舉一個反例即可.

  例3:把下列命題寫成“若P,則q”的形式,并判斷是真命題還是假命題:

 。1)面積相等的兩個三角形全等。

 。2)負(fù)數(shù)的立方是負(fù)數(shù)。

 。3)對頂角相等。

  分析:要把一個命題寫成“若P,則q”的形式,關(guān)鍵是要分清命題的條件和結(jié)論,然后寫成“若條件,則結(jié)論”即“若P,則q”的形式.解略。

  三、鞏固練習(xí):

  P4第2,3。

  四、作業(yè):

  P8:習(xí)題1.1A組~第1題

  五、教學(xué)反思

  師生共同回憶本節(jié)的學(xué)習(xí)內(nèi)容.

  1、什么叫命題?真命題?假命題?

  2、命題是由哪兩部分構(gòu)成的?

  3、怎樣將命題寫成“若P,則q”的形式.

  4、如何判斷真假命題.

  高二數(shù)學(xué)教案 篇13

  一、課前準(zhǔn)備:

  【自主梳理】

  1.對數(shù):

  (1) 一般地,如果 ,那么實數(shù) 叫做________________,記為________,其中 叫做對數(shù)的_______, 叫做________.

  (2)以10為底的對數(shù)記為________,以 為底的對數(shù)記為_______.

  (3) , .

  2.對數(shù)的運(yùn)算性質(zhì):

  (1)如果 ,那么 ,

  .

  (2)對數(shù)的換底公式: .

  3.對數(shù)函數(shù):

  一般地,我們把函數(shù)____________叫做對數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是______.

  4.對數(shù)函數(shù)的圖像與性質(zhì):

  a1 0

  圖象性

  質(zhì) 定義域:___________

  值域:_____________

  過點(1,0),即當(dāng)x=1時,y=0

  x(0,1)時_________

  x(1,+)時________ x(0,1)時_________

  x(1,+)時________

  在___________上是增函數(shù) 在__________上是減函數(shù)

  【自我檢測】

  1. 的定義域為_________.

  2.化簡: .

  3.不等式 的解集為________________.

  4.利用對數(shù)的換底公式計算: .

  5.函數(shù) 的奇偶性是____________.

  6.對于任意的 ,若函數(shù) ,則 與 的'大小關(guān)系是___________________________.

  二、課堂活動:

  【例1】填空題:

  (1) .

  (2)比較 與 的大小為___________.

  (3)如果函數(shù) ,那么 的最大值是_____________.

  (4)函數(shù) 的奇偶性是___________.

  【例2】求函數(shù) 的定義域和值域.

  【例3】已知函數(shù) 滿足 .

  (1)求 的解析式;

  (2)判斷 的奇偶性;

  (3)解不等式 .

  課堂小結(jié)

  三、課后作業(yè)

  1. .略

  2.函數(shù) 的定義域為_______________.

  3.函數(shù) 的值域是_____________.

  4.若 ,則 的取值范圍是_____________.

  5.設(shè) 則 的大小關(guān)系是_____________.

  6.設(shè)函數(shù) ,若 ,則 的取值范圍為_________________.

  7.當(dāng) 時,不等式 恒成立,則 的取值范圍為______________.

  8.函數(shù) 在區(qū)間 上的值域為 ,則 的最小值為____________.

  9.已知 .

  (1)求 的定義域;

  (2)判斷 的奇偶性并予以證明;

  (3)求使 的 的取值范圍.

  10.對于函數(shù) ,回答下列問題:

  (1)若 的定義域為 ,求實數(shù) 的取值范圍;

  (2)若 的值域為 ,求實數(shù) 的取值范圍;

  (3)若函數(shù) 在 內(nèi)有意義,求實數(shù) 的取值范圍.

  四、糾錯分析

  錯題卡 題 號 錯 題 原 因 分 析

  高二數(shù)學(xué)教案:對數(shù)與對數(shù)函數(shù)

  一、課前準(zhǔn)備:

  【自主梳理】

  1.對數(shù)

  (1)以 為底的 的對數(shù), ,底數(shù),真數(shù).

  (2) , .

  (3)0,1.

  2.對數(shù)的運(yùn)算性質(zhì)

  (1) , , .

  (2) .

  3.對數(shù)函數(shù)

  , .

  4.對數(shù)函數(shù)的圖像與性質(zhì)

  a1 0

  圖象性質(zhì) 定義域:(0,+)

  值域:R

  過點(1,0),即當(dāng)x=1時,y=0

  x(0,1)時y0

  x(1,+)時y0 x(0,1)時y0

  x(1,+)時y0

  在(0,+)上是增函數(shù) 在(0,+)上是減函數(shù)

  【自我檢測】

  1. 2. 3.

  4. 5.奇函數(shù) 6. .

  二、課堂活動:

  【例1】填空題:

  (1)3.

  (2) .

  (3)0.

  (4)奇函數(shù).

  【例2】解:由 得 .所以函數(shù) 的定義域是(0,1).

  因為 ,所以,當(dāng) 時, ,函數(shù) 的值域為 ;當(dāng) 時, ,函數(shù) 的值域為 .

  【例3】解:(1) ,所以 .

  (2)定義域(-3,3)關(guān)于原點對稱,所以

  ,所以 為奇函數(shù).

  (3) ,所以當(dāng) 時, 解得

  當(dāng) 時, 解得 .

  高二數(shù)學(xué)教案 篇14

  一、教學(xué)目標(biāo):

  1、知識與技能目標(biāo)

 、倮斫庋h(huán)結(jié)構(gòu),能識別和理解簡單的框圖的功能。

 、谀苓\(yùn)用循環(huán)結(jié)構(gòu)設(shè)計程序框圖解決簡單的問題。

  2、過程與方法目標(biāo)

  通過模仿、操作、探索,學(xué)習(xí)設(shè)計程序框圖表達(dá),解決問題的過程,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力。

  3、情感、態(tài)度與價值觀目標(biāo)

  通過本節(jié)的自主性學(xué)習(xí),讓學(xué)生感受和體會算法思想在解決具體問題中的意義,增強(qiáng)學(xué)生的創(chuàng)新能力和應(yīng)用數(shù)學(xué)的意識。三、教法分析

  二、教學(xué)重點、難點

  重點:理解循環(huán)結(jié)構(gòu),能識別和畫出簡單的循環(huán)結(jié)構(gòu)框圖,

  難點:循環(huán)結(jié)構(gòu)中循環(huán)條件和循環(huán)體的確定。

  三、教法、學(xué)法

  本節(jié)課我遵循引導(dǎo)發(fā)現(xiàn),循序漸進(jìn)的思路,采用問題探究式教學(xué)。運(yùn)用多媒體,投影儀輔助。倡導(dǎo)“自主、合作、探究”的學(xué)習(xí)方式。

  四、 教學(xué)過程:

  (一)創(chuàng)設(shè)情境,溫故求新

  引例:寫出求 的值的一個算法,并用框圖表示你的算法。

  此例由學(xué)生動手完成,投影展示學(xué)生的做法,師生共同點評。鼓勵學(xué)生一題多解——求創(chuàng)。

  設(shè)計引例的目的是復(fù)習(xí)順序結(jié)構(gòu),提出遞推求和的方法,導(dǎo)入新課。此環(huán)節(jié)旨在提升學(xué)生的求知欲、探索欲,使學(xué)生保持良好、積極的情感體驗。

  (二)講授新課

  1、循序漸進(jìn),理解知識

  【1】選擇“累加器”作為載體,借助“累加器”使學(xué)生經(jīng)歷把“遞推求和”轉(zhuǎn)化為“循環(huán)求和”的過程,同時經(jīng)歷初始化變量,確定循環(huán)體,設(shè)置循環(huán)終止條件3個構(gòu)造循環(huán)結(jié)構(gòu)的關(guān)鍵步驟。

  (1)將“遞推求和”轉(zhuǎn)化為“循環(huán)求和”的緣由及轉(zhuǎn)化的方法和途徑

  引例“求 的值”這個問題的自然求和過程可以表示為:

  用遞推公式表示為:

  直接利用這個遞推公式構(gòu)造算法在步驟 中使用了 共100個變量,計算機(jī)執(zhí)行這樣的算法時需要占用較大的內(nèi)存。為了節(jié)省變量,充分體現(xiàn)計算機(jī)能以極快的速度進(jìn)行重復(fù)計算的優(yōu)勢,需要從上述遞推求和的步驟 中提取出共同的結(jié)構(gòu),即第n步的結(jié)果=第(n-1)步的`結(jié)果+n。若引進(jìn)一個變量 來表示每一步的計算結(jié)果,則第n步可以表示為賦值過程 。

  (2)“ ”的含義

  利用多媒體動畫展示計算機(jī)中累加器的工作原理,借助形象直觀對知識點進(jìn)行強(qiáng)調(diào)說明① 的作用是將賦值號右邊表達(dá)式 的值賦給賦值號左邊的變量 。

  ②賦值號“=”右邊的變量“ ”表示前一步累加所得的和,賦值號“=”左邊的“ ”表示該步累加所得的和,含義不同。

  ③賦值號“=”與數(shù)學(xué)中的等號意義不同。 在數(shù)學(xué)中是不成立的。

  借助“累加器”既突破了難點,同時也使學(xué)生理解了 中 的變化和 的含義。

  (3)初始化變量,設(shè)置循環(huán)終止條件

  由 的初始值為0, 的值由1增加到100,可以初始化循環(huán)變量和設(shè)置循環(huán)終止條件。

  【2】循環(huán)結(jié)構(gòu)的概念

  根據(jù)指定條件決定是否重復(fù)執(zhí)行一條或多條指令的控制結(jié)構(gòu)稱為循環(huán)結(jié)構(gòu)。

  教師學(xué)生一起共同完成引例的框圖表示,并由此引出本節(jié)課的重點知識循環(huán)結(jié)構(gòu)的概念。這樣講解既突出了重點又突破了難點,同時使學(xué)生體會了問題的抽象過程和算法的構(gòu)建過程。還體現(xiàn)了我們研究問題常用的“由特殊到一般”的思維方式。

  2、類比探究,掌握知識

  例1:改造引例的程序框圖表示①求 的值

 、谇 的值

  ③求 的值

 、芮 的值

  此例可由學(xué)生獨(dú)立思考、回答,師生共同點評完成。

  通過對引例框圖的反復(fù)改造逐步幫助學(xué)生深入理解循環(huán)結(jié)構(gòu),體會用循環(huán)結(jié)構(gòu)表達(dá)算法,關(guān)鍵要做好三點:①確定循環(huán)變量和初始值②確定循環(huán)體③確定循環(huán)終止條件。

【高二數(shù)學(xué)教案】相關(guān)文章:

高二數(shù)學(xué)教案01-05

2021高二數(shù)學(xué)教案09-01

人教版高二數(shù)學(xué)教案02-10

人教版高二數(shù)學(xué)教案范文09-29

高中高二數(shù)學(xué)教案02-25

高中高二數(shù)學(xué)教案3篇11-02

高中高二數(shù)學(xué)教案(3篇)11-03

一個數(shù)乘以小數(shù)高二數(shù)學(xué)教案02-23

數(shù)學(xué)教案-數(shù)學(xué)教案09-29