久久99热66热这里只有精品,特黄特色的大片在线观看,亚洲日本三级在线观看,国产三级农村妇女在线,亚洲av毛片免费在线观看,哺乳叫自慰在线看,天天干美女av网

數(shù)學(xué)教案-可化為一元二次方程的分式方程

時(shí)間:2023-05-02 02:27:54 初中數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)教案-可化為一元二次方程的分式方程

一、教學(xué)目標(biāo) 

1.使學(xué)生掌握可化為一元二次方程的分式方程的解法,能用去分母的方法或換元的方法求此類方程的解,并會(huì)驗(yàn)根.

數(shù)學(xué)教案-可化為一元二次方程的分式方程

2.通過(guò)本節(jié)課的教學(xué),向?qū)W生滲透“轉(zhuǎn)化”的數(shù)學(xué)思想方法;

3.通過(guò)本節(jié)的教學(xué),繼續(xù)向?qū)W生滲透事物是相互聯(lián)系及相互轉(zhuǎn)化的辨證唯物主義觀點(diǎn).

二、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

1.教學(xué)重點(diǎn):可化為一元二次方程的分式方程的解法.

2.教學(xué)難點(diǎn) :解分式方程,學(xué)生不容易理解為什么必須進(jìn)行檢驗(yàn).

3.教學(xué)疑點(diǎn):學(xué)生容易忽視對(duì)分式方程的解進(jìn)行檢驗(yàn)通過(guò)對(duì)分式方程的解的剖析,進(jìn)一步使學(xué)生認(rèn)識(shí)解分式方程必須進(jìn)行檢驗(yàn)的重要性.

4.解決辦法:(l)分式方程的解法順序是:先特殊、后一般,即能用換元法的方程應(yīng)盡量用換元法解.(2)無(wú)論用去分母法解,還是換元法解分式方程,都必須進(jìn)行驗(yàn)根,驗(yàn)根是解分式方程必不可少的一個(gè)重要步驟.(3)方程的增根具備兩個(gè)特點(diǎn),①它是由分式方程所轉(zhuǎn)化成的整式方程的根②它能使原分式方程的公分母為0.

三、教學(xué)步驟 

(一)教學(xué)過(guò)程 

1.復(fù)習(xí)提問(wèn)

(1)什么叫做分式方程?解可化為一元一次方程的分式方程的方法與步驟是什么?

(2)解可化為一元一次方程的分式方程為什么要檢驗(yàn)?檢驗(yàn)的方法是什么?

(3)解方程,并由此方程說(shuō)明解方程過(guò)程中產(chǎn)生增根的原因.

通過(guò)(1)、(2)、(3)的準(zhǔn)備,可直接點(diǎn)出本節(jié)的內(nèi)容:可化為一元二次方程的分式方程的解法相同.

在教師點(diǎn)出本節(jié)內(nèi)容的處理方法與以前所學(xué)的知識(shí)完全類同后,讓全體學(xué)生對(duì)照前面復(fù)習(xí)過(guò)的分式方程的解,來(lái)進(jìn)一步加深對(duì)“類比”法的理解,以便學(xué)生全面地參與到教學(xué)活動(dòng)中去,全面提高教學(xué)質(zhì)量.

在前面的基礎(chǔ)上,為了加深學(xué)生對(duì)新知識(shí)的理解,教師與學(xué)生共同分析解決例題,以提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.

2.例題講解

例1  解方程.

分析  對(duì)于此方程的解法,不是教師講如何如何解,而是讓學(xué)生對(duì)已有知識(shí)的回憶,使用原來(lái)的方法,去通過(guò)試的手段來(lái)解決,在學(xué)生敘述過(guò)程中,發(fā)現(xiàn)問(wèn)題并及時(shí)糾正.

解:兩邊都乘以,得

去括號(hào),得

整理,得

解這個(gè)方程,得

檢驗(yàn):把代入,所以是原方程的根.

∴  原方程的根是.

雖然,此種類型的方程在初二上學(xué)期已學(xué)習(xí)過(guò),但由于相隔時(shí)間比較長(zhǎng),所以有一些學(xué)

生容易犯的類型錯(cuò)誤應(yīng)加以強(qiáng)調(diào),如在第一步中.需強(qiáng)調(diào)方程兩邊同時(shí)乘以最簡(jiǎn)公分母.另

外,在把分式方程轉(zhuǎn)化為整式方程后,所得的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,由于是解

分式方程,所以在下結(jié)論時(shí),應(yīng)強(qiáng)調(diào)取一即可,這一點(diǎn),教師應(yīng)給以強(qiáng)調(diào).

例2  解方程

分析:解此方程的關(guān)鍵是如何將分式方程轉(zhuǎn)化為整式方程,而轉(zhuǎn)化為整式方程的關(guān)鍵是

正確地確定出方程中各分母的最簡(jiǎn)公分母,由于此方程中的分母并非均按的降冪排列,所

以將方程的分母作一轉(zhuǎn)化,化為按字母終X進(jìn)行降暴排列,并對(duì)可進(jìn)行分解的分母進(jìn)行分解,從而確定出最簡(jiǎn)公分母.

解:方程兩邊都乘以,約去分母,得

整理后,得

解這個(gè)方程,得

檢驗(yàn):把代入,它不等于0,所以是原方程的根,把

代入它等于0,所以是增根.

∴   原方程的根是

師生共同解決例1、例2后,教師引導(dǎo)學(xué)生與已學(xué)過(guò)的知識(shí)進(jìn)行比較.

例3  解方程.

分析:此題也可像前面例l、例2一樣通過(guò)去分母解決,學(xué)生可以試,但由于轉(zhuǎn)化后為一元四次方程,解起來(lái)難度很大,因此應(yīng)尋求簡(jiǎn)便方式,通過(guò)引導(dǎo)學(xué)生仔細(xì)觀察發(fā)現(xiàn),方程中含有未知數(shù)的部分  和互為倒數(shù),由此可設(shè)  ,則可通過(guò)換元法來(lái)解題,通過(guò)求出y后,再求原方程的未知數(shù)的值.

解:設(shè),那么,于是原方程變形為

兩邊都乘以y,得

解得

.

當(dāng)時(shí),,去分母,得

解得;

當(dāng)時(shí),,去分母整理,得

,

檢驗(yàn):把分別代入原方程的分母,各分母均不等于0.

∴  原方程的根是

,.

此題在解題過(guò)程中,經(jīng)過(guò)兩次“轉(zhuǎn)化”,所以在檢驗(yàn)中,把所得的未知數(shù)的值代入原方程中的分母進(jìn)行檢驗(yàn).

鞏固練習(xí):教材P49中1、2引導(dǎo)學(xué)筆答.

(二)總結(jié)、擴(kuò)展

對(duì)于小結(jié),教師應(yīng)引導(dǎo)學(xué)生做出.

本節(jié)內(nèi)容的小結(jié)應(yīng)從所學(xué)習(xí)的知識(shí)內(nèi)容、所學(xué)知識(shí)采用了什么數(shù)學(xué)思想及教學(xué)方法兩方面進(jìn)行.

本節(jié)我們通過(guò)類比的方法,在已有的解可化為一元一次方程的分式方程的基礎(chǔ)上,學(xué)習(xí)了可化為一元二次方程的分式方程的解法,在具體方程的解法上,適用了“轉(zhuǎn)化”與“換元”的基本數(shù)學(xué)思想與基本數(shù)學(xué)方法.

此小結(jié)的目的,使學(xué)生能利用“類比”的方法,使學(xué)過(guò)的知識(shí)系統(tǒng)化、網(wǎng)絡(luò)化,形成認(rèn)知結(jié)構(gòu),便于學(xué)生掌握.

四、布置作業(yè) 

1.教材P50中A1、2、3.

2.教材P51中B1、2

五、板書(shū)設(shè)計(jì) 

探究活動(dòng)1

解方程:

分析:若去分母,則會(huì)變?yōu)楦叽畏匠,這樣解起來(lái),比較繁,注意到分母中都有,可用換元法降次

設(shè),則原方程變?yōu)?/p>

∴或無(wú)解

經(jīng)檢驗(yàn):是原方程的解

探究活動(dòng)2

有農(nóng)藥一桶,倒出8升后,用水補(bǔ)滿,然后又倒出4升,再用水補(bǔ)滿,此時(shí)農(nóng)藥與水的比為18:7,求桶的容積.

解:設(shè)桶的容積為 升,第一次用水補(bǔ)滿后,濃度為 ,第二次倒出的農(nóng)藥數(shù)為4. 升,兩次共倒出的農(nóng)藥總量(8+4· )占原來(lái)農(nóng)藥 ,故

整理,

(舍去)

答:桶的容積為40升.

數(shù)學(xué)教案-可化為一元二次方程的分式方程

【數(shù)學(xué)教案-可化為一元二次方程的分式方程】相關(guān)文章:

《一元二次方程》數(shù)學(xué)教案(精選12篇)12-25

《一元二次方程》數(shù)學(xué)教案(精選10篇)06-26

一元二次方程教案01-15

一元二次方程的解法教案12-30

一元二次方程教學(xué)反思04-05

一元二次方程的解法教學(xué)反思04-04

數(shù)學(xué)一元二次方程公式教學(xué)03-25

一元二次方程應(yīng)用題提高04-30

數(shù)學(xué)《一元二次方程》教案設(shè)計(jì)12-04

關(guān)于《一元二次方程》教案3篇05-16