【熱】初中數學教案
在教學工作者實際的教學活動中,時常需要用到教案,教案是實施教學的主要依據,有著至關重要的作用?靵韰⒖冀贪甘窃趺磳懙陌桑∫韵率切【帋痛蠹艺淼某踔袛祵W教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
初中數學教案1
教學目標:
1、知識與技能:通過對多種實際問題的分析,感受方程作為刻畫現實世界有效模型的意義。
2、過程與方法:通過觀察,歸納一元一次方程的概念。
3、情感與態(tài)度:體驗數學與日常生活密切相關,認識到許多實際問題可以用數學方法解決。
教學重點:歸納一元次方程的概念
教學難點:感受方程作為刻畫現實世界有效模型的意義.
教學過程:
一、情景導入:
我能猜出你們的年齡,相信嗎?
只要任何一個同學回答我一個問題,我就能馬上猜到他的年齡是多少歲,我們來試試吧.
問:你的年齡乘以2加3等于多少?
學生說出結果,教師猜測年齡,并問:你們知道我是怎么做的嗎?
學生討論并回答
二、知識探究:
1、方程的教學(投影演示)
小彬和小明也在進行猜年齡游戲,我們來看一看。
找出這道題中的等量關系,列出方程.
大家觀察,這兩個式子有什么特點。
討論并回答:什么是方程?方程有哪些特點?
2、 判斷下列式子是不是方程?
。1)X+2=3(是)(2)X+3Y=6(是)
。3)3M-6(不是)(4)1+2=3(不是)
(5)X+3>5(不是)(6)Y-12=5(是)
三、合作交流
1、如果告訴我們一些實際生活中的問題,大家能夠自己列出方程嗎?(投影演示)
情景一:小穎種了一株樹苗,開始時樹苗高為40厘米,栽種后每周樹苗長高約15厘米,大約幾周后樹苗長高到1米?
你能找出題中的等量關系嗎?怎樣列方程?由此題你們想到了些什么?
情景二:第五次全國人口普查統(tǒng)計數據(20xx年3月28日新華社公布)
截至20xx年11月1日0時,全國每10萬人中具有大學文化程度的人數為3611人,比1990年7月1日0時增長了153.94%
1990年6月底每10萬人中約有多少人具有大學文化程度?
情景三:西湖中學的'體育場的足球場,其周長為200米,長和寬之差為12米,這個足球場的長和寬分別是多少米?
下面是剛才根據幾道情景題所列的方程,分析下列方程有何共同點?
2X–5=21
40+15X=100
X(1+153.94﹪)=3611
2[X+(X+12)]=200
2[Y+(Y–12)]=200
在一個方程中,只含有一個未知數X(元),并且未知數的指數是1(次),這樣的方程叫一元一次方程。
問:大家剛才都已經自己列出了方程,那個同學能夠說一下你是怎樣列出方程的,列方程應該分為那幾步呢?
生:分組討論,回答列方程的步驟(1)找等量關系(2)設未知數(3)列方程
四、隨堂練習
1、投影趣味習題,2、做一做
下面有兩道題,請選做一題。
。1)、請根據方程2X+3=21自己設計一道有實際背景的應用題。
。2)、發(fā)揮你的想象,用自己的年齡編一道應用題,并列出方程。
五、課堂小節(jié)
1、這節(jié)課你學到了什么?
2、這節(jié)課給你印象最深的是什么?
六、作業(yè):分組布置
初中數學教案2
一、素質教育目標
(一)知識教學點
1.掌握的三要素,能正確畫出.
2.能將已知數在上表示出來,能說出上已知點所表示的數.
(二)能力訓練點
1.使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意識.
2.對學生滲透數形結合的思想方法.
(三)德育滲透點
使學生初步了解數學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點.
(四)美育滲透點
通過畫,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受.
二、學法引導
1.教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導—反饋矯正”的教學方法.
2.學生學法:動手畫,動腦概括的三要素,動手、動腦做練習.
三、重點、難點、疑點及解決辦法
1.重點:正確掌握畫法和用上的點表示有理數.
2.難點:有理數和上的點的對應關系。
四、課時安排
1課時
五、教具學具準備
電腦、投影儀、自制膠片.
六、師生互動活動設計
師生同步畫,學生概括三要素,師出示投影,生動手動腦練習
七、教學步驟
(一)創(chuàng)設情境,引入新課
師:大家知識溫度計的用途是什么?
生:溫度計可以測量溫度
(出示投影1)
三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.
師:三個溫度計所表示的溫度是多少?
生:2℃,-5℃,0℃.
我們能否用類似溫度計的圖形表示有理數呢?
這種表示數的圖形就是今天我們要學的內容—(板書課題).
【教法說明】從溫度計用標有讀數的'刻度來表示溫度的高低這個事實出發(fā),引出本節(jié)課所要學的內容—.再從溫度計這個實物形象抽象出來研究.既激發(fā)了學生的學習興趣,又使學生受到把實際問題抽象成數學問題的訓練,培養(yǎng)了用數學的意識.
(二)探索新知,講授新課
1.的畫法
與溫度計類似,可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零,具體做法如下:
第一步:畫直線定原點原點表示0(相當于溫度計上的0℃).
第二步:規(guī)定從原點向右的為正方向那么相反的方向(從原點向左)則為負方向.(相當于溫度計上℃以上為正,0℃以下為負).
第三步:選擇適當的長度為單位長度(相當于溫度計上每1℃占1小格的長度).
【教法說明】教師邊講解邊示范,學生跟著一起畫圖.培養(yǎng)學生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學生在認知過程中領悟這種思想方法.
讓學生觀察畫好的直線,思考以下問題:
(出示投影1)
(1)原點表示什么數?
(2)原點右方表示什么數?原點左方表示什么數?
(3)表示+2的點在什么位置?表示-1的點在什么位置?
(4)原點向右0.5個單位長度的A點表示什么數?原點向左個單位長度的B點表示什么數?
根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出的定義。
學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準備更正或補充。
初中數學教案3
學情分析:
高三(7)是我校理科重點班,該班的學生具有良好的數學功底,處于復習階段的他們目標更明確,學習熱情高,課堂投入,思考積極。就本節(jié)開課的內容而言,學生已掌握了“對稱問題”本質屬性,能夠從圖象和表達式上準確地理解對稱問題。但也只是停留在就事論事的基礎上,對問題的抽象、歸納概括,引申拓展還缺乏一定的能力和意識。對于周期概念,學生沒有什么的問題。
教材分析:
1.對稱問題是高中數學中比較難的問題,學生一般由于問題的抽象性,同時由于這中間存在關于點對稱和關于直線對稱這兩類問題,而它們的數學表達式又是那么相似,學生如果沒有真正理解很難分清誰是誰非。而且在高考的問題中經常會碰到,因此有必要加以澄清和深化理解。
2.對稱問題和周期問題也存在一定的聯系,本節(jié)可以通過足夠的條件闡明這一聯系的實質。
教學目標:
理解一個函數存在兩次對稱(可能關于兩個點對稱或兩條直線對稱或一個點加上一個對直線)時,如何判斷函數具有周期性。
重點和難點:
具有兩次對稱問題的抽象函數具有周期性,而且要求求出周期。
教學方法:
從簡單到復雜,以啟發(fā)思想為指導,精講重思,暴露學生的思維,使學生整節(jié)課都處于思考之中。
教學程序:
一、引入
師:當一個人站在一面鏡子前,面對鏡子一定的距離,那么在鏡中的像有什么特征?
生:(物理常識)人和像關于鏡子對稱。
師:現在在此人的身后再放一面鏡子,鏡面對著人的背面,此時在此人面前的鏡子中的像又是什么?
生:如果鏡子夠大的話,里面將是無數個排列的人。
師:道理何在?
生:首先是人在前面鏡中的像連同人一起要在后面鏡中成像,這一像反過來連同人又在前面鏡中成像,這樣反反復復,就得到了無數個人像,而且具有周期性(即圖象重復出現)。
師:如果將人看成一段函數,將鏡子看成一條對稱軸,那么整個函數的圖象應該是怎樣的(圖象具有什么特征)。
引入課題:對稱+對稱=?
二、探究
回顧:關于圖象的對稱問題分為兩類:一類是關于點對稱,另一類是關于直線對稱,今天我們來研究一般的函數對稱問題,我們從函數表達式來研究,對于直線對稱:若f(x)關于x=a對稱,則有f(x)=f(2a-x)或f(a+x)=f(a-x);對于點對稱:f(x)關于(a,0)對稱,則有f(x)=-(2a-x)或f(a+x)=-f(a-x)。
對于奇函數[f(x)=-f(-x)]和偶函數[f(x)=f(-x)],則是這兩類對稱中的特例。
延伸:若是f(a+x)=f(b+x),則函數關于什么對稱(關于直線x=(a+b)/2對稱)
提問:請同學們找?guī)讉關于直線x=a對稱的函數的表達式?
生:f(4a-x)=f(6a+x)
下面研究當函數具有兩次對稱時,結果有什么特征?
問題設計:
①函數f(x)
。1)是偶函數
。2)關于x=a對稱
分析:由條件(2),可得f(a+x)=f(a-x),又由條件(1),所以f(x+a)=f(x-a)。
(以x+a代替上式中的x),所以f(x)=f(2a+x),由周期定義f(x)=f(T+x),所以f(x)是以|2a|為周期的函數
、诤瘮礷(x)
(1)是奇函數
。2)關于x=a對稱
分析:由條件(2),可得f(x)=f(2a-x)又由條件(1)f(x)=-f(-x),所以-f(-x)=f(2a-x),即-f(x)=f(2a+x),所以f(4a+x)=-f(2a+x)=f(x),可得函數f(x)是以|4a|為周期的函數,
以此類推,
、酆瘮礷(x)滿足
(1)是偶函數
。2)關于(a,0)對稱
、芎瘮礷(x)滿足
。1)是奇函數
。2)關于(a,0)對稱
、莺瘮礷(x)滿足
。1)關于x=b對稱
(2)關于x=a對稱
、藓瘮礷(x)滿足
(1)關于(a,0)對稱
。2)關于(b,0)對稱
、吆瘮礷(x)滿足
。1)關于x=a對稱
。2)關于(b,0)對稱
。◣熒餐瓿桑
學生練習:見復習參考書
評教:
教材處理恰當
1.前面的課堂教學中已經講了關于圖象平移,伸縮的問題,對于對稱問題在前面也分析了關于含絕對值的函數圖象問題(y=|f(x)|,y=f(|x|))。
2.今天這堂課分析非絕對值的對稱問題,主要是關于點對稱和直線對稱的問題。
3.下一節(jié)殷老師構思,將一個函數的對稱變成兩個函數的對稱問題,即如:函數f(x)和函數f(-x)的關系;函數f(x)和函數f(2a-x)的關系;函數-f(x)和函數f(2a+x)的關系,即對照這堂課的內容,將一個函數變成兩個函數,再尋找二者關系,以便通過其中一個函數來解決另一個函數問題。如:已知函數-f(x)的圖象,畫出函數f(2a+x)的圖象及分析其性質。
(點評:對于教學任務的分析是一個教師的教學水平的重要標志,同樣的一個教師對教材的處理各不相同,當然所得的結果也各不相同,我們評一節(jié)課好壞,同時也要關注這堂課的前述及后續(xù),只有知道前后的內容,才能把握上課之人想法,教學思路,處理教材的能力,我認為這樣的處理比較有邏輯性,能夠幫學生梳理知識,使學生對知識的結構比較清晰,符合建構主義觀點。這對高考復習內容較多的情況下更容易幫助學生的理解,體現上課老師對教材具有較高的處理水平。)
引入貼近生活
數學知識通常被學生認為是最沒用的',枯燥乏味的,原因是學生在實際生活中的問題很少能夠和數學聯系起來,而通常這樣的聯系確定很難尋找,現在的新教材就加強了這一方面的聯系,這堂課殷老師就以是實際生活中常見的照鏡子一事引入,這里我覺點有兩個地方比較不錯:
。1)將數學知識和實際聯系起來,因此說聯系還是有的,主要我們沒有仔細體會,沒有這種思維習慣,這樣有聯系的問題學生就感興趣,自然投入更多了;
。2)更為重要的是,這個引入不但引出了主題,還成功地解決了難點(抽象思維能力),如果是直接給出問題,學生可能不會想到結論是什么,但是由鏡子引入,學生就很容易理解為什么函數具有周期性,為接下來從函數表達式上來分析埋下了墊腳石。對于問題情境的設置恰當與否,決定了能否激發(fā)學生的求知欲望,能否積極主動地參與到課堂教學中。
可改進之處:對于照鏡子問題,在實際生活同時用兩面鏡子,可能不多,因此學生要推斷也只憑想象再結合物理知識,可能有學生想出來,那么他對這一問題的理解就憑老師的講解,還是存有疑惑,如果能現實操作,理解會更深,當然不可能真的取來兩面大鏡子,我們可借助于“幾何畫板”數學教學軟件,它對于對稱問題,操作簡單,下面是本人做的圖片:
(三)問題設計巧妙
函數f(x)滿足
(1)是偶函數
。2)關于x=a對稱
②函數f(x)滿足
。1)是奇函數
(2)關于x=a對稱
、酆瘮礷(x)滿足
。1)是偶函數
(2)關于(a,0)對稱
、芎瘮礷(x)滿足
。1)是奇函數
。2)關于(a,0)對稱
、莺瘮礷(x)滿足
。1)關于x=b對稱
(2)關于x=a對稱
、藓瘮礷(x)滿足
。1)關于(a,0)對稱
(2)關于(b,0)對稱
、吆瘮礷(x)滿足
。1)關于x=a對稱
(2)關于(b,0)對稱
題組、變式訓練是提高學生思維能力,分析問題解決問題能力的常用方法
(1)學生能通過辨析達到對問題真正理解,對于突破難點起關鍵作用。
。2)通過一連串的結論,使學生在以后拿到類似的問題,會引起重視,究竟是其中哪一種。
同時這里的問題設計遵循了由易到難,特殊到一般的過程,這和學生的思維認識規(guī)律相符合。
可改進之處:對于這類問題,當然有必要讓學生理解,對于一連串問題的理解經過思考和老師的分析是可以理解但是學生的抽象思維能力還是有待于提高的,到最后可能在頭腦里的印象還是比較模糊了,誰是誰非。⑤⑥⑦三個例子均可讓學生自己來演練,以便讓每個學生有獨立思考的機會。以提高學生獨立解決問題的能力,和真正檢測學生對剛才問題的理解程度。
(四)善于捕捉歸納
在教學中處處留心,總能發(fā)現點什么,對于平時的練習也是一樣,通過平時作問題,從問題中發(fā)現規(guī)律,進行提練、歸納。這節(jié)課的問題設計來自殷老師平時的留心觀察,這一點確實提醒我們這些年青教師,要善于觀察、思考、發(fā)現問題,總結規(guī)律。
。ㄎ澹┓治鐾笍匾锥
課堂45分鐘的效率如何是學生學好每一門課程的關鍵,教師分析有沒有到位,直接影響著學生的聽課效率,講得多并不是好事,講少了怕學生聽不懂,這是很多新教師關心的問題,老教師上課時知道講到哪就夠了,知道學生在哪兒可能有疑惑,就重點講解,有些地方一帶而過,這節(jié)課很多地方分析的非常清楚,比如在講解,關于直線對稱和點對稱時
求表達式,他這樣講解f(x)關于x=a對稱,為什么會f(x)=f(2a-x)
。1)兩點關于x軸對稱,縱坐標(函數值y)沒變,所以f()=f()(f()表示函數值)
(2)橫坐標原來為x,對稱后變了,由中點坐標公式得,x1=2a-x,所以f(x)=f(2a-x),講解關于點(a,0)對稱時求表達式,由于縱坐標變?yōu)樵瓉硐喾磾,所以f()=一f(),同樣橫坐標也可以由中點公式得2a-x,所以f(x)=一f(2a-x),分析得很清楚。
。┍┞秾W生思維
本節(jié)課應該說學生的思維還是比較活躍的,在老師的幫助下,學生表現比較積極、投入,課堂氣氛活躍,學生能夠根據自己的理解提出方案,對于問題的解答反映還是比較快的,但是也不排除有個別學生可能由于問題的抽象性,對于問題的本質缺乏充分的認識及自身理解水平的問題,對于問題的下一步是什么,如何思考沒有想法。
可改進建議:由于課堂容量較大,教師可能考慮到時間的問題,對于后幾個問題沒有讓學生有充分的時間思考,有些思維慢,或理解不夠的學生可能跟不上,在下面沒有反應,建議教師事先出張學案,將要研究的問題羅列出一張?zhí)峋V,讓學生在課前去思考,這樣上課的聽課效率可能會更好。
初中數學教案4
一、目的要求
1、使學生初步理解一次函數與正比例函數的概念。
2、使學生能夠根據實際問題中的條件,確定一次函數與正比例函數的解析式。
二、內容分析
1、初中主要是通過幾種簡單的函數的初步介紹來學習函數的,前面三小節(jié),先學習函數的概念與表示法,這是為學習后面的幾種具體的函數作準備的,從本節(jié)開始,將依次學習一次函數(包括正比例函數)、二次函數與反比例函數的有關知識,大體上,每種函數是按函數的解析式、圖象及性質這個順序講述的,通過這些具體函數的學習,學生可以加深對函數意義、函數表示法的認識,并且,結合這些內容,學生還會逐步熟悉函數的知識及有關的數學思想方法在解決實際問題中的應用。
2、舊教材在講幾個具體的函數時,是按先講正反比例函數,后講一次、二次函數順序編排的,這是適當照顧了學生在小學數學中學了正反比例關系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數,并且,把正比例函數作為一次函數的特例予以介紹,而最后才學習反比例函數,為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規(guī)津,從函數角度看,一次函數的解析式、圖象與性質都是比較簡單的,相對來說,反比例函數就要復雜一些了,特別是,反比例函數的圖象是由兩條曲線組成的,先學習反比例函數難度可能要大一些。第二,把正比例函數作為一次函數的特例介紹,既可以提高學習效益,又便于學生了解正比例函數與一次函數的關系,從而,可以更好地理解這兩種函數的'概念、圖象與性質。
3、“函數及其圖象”這一章的重點是一次函數的概念、圖象和性質,一方面,在學生初次接觸函數的有關內容時,一定要結合具體函數進行學習,因此,全章的主要內容,是側重在具體函數的講述上的。另一方面,在大綱規(guī)定的幾種具體函數中,一次函數是最基本的,教科書對一次函數的討論也比較全面。通過一次函數的學習,學生可以對函數的研究方法有一個初步的認識與了解,從而能更好地把握學習二次函數、反比例函數的學習方法。
三、教學過程
復習提問:
1、什么是函數?
2、函數有哪幾種表示方法?
3、舉出幾個函數的例子。
新課講解:
可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數的例子。然后讓學生觀察這些例子(實際上均是一次函數的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:
(1)這些式子表示的是什么關系?(在學生明確這些式子表示函數關系后,可指出,這是函數。)
(2)這些函數中的自變量是什么?函數是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數,等號右邊是一個代數式,其中的字母x與t是自變量。)
(3)在這些函數式中,表示函數的自變量的式子,分別是關于自變量的什么式呢?(這題牽扯到有關整式的基本概念,表示函數的自變量的式子也就是等號右邊的式子,都是關于自變量的一次式。)
(4)x的一次式的一般形式是什么?(結合一元一次方程的有關知識,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的層層設問,最后給出一次函數的定義。
一般地,如果y=kx+b(k,b是常數,k≠0)那么,y叫做x的一次函數。
對這個定義,要注意:
(1)x是變量,k,b是常數;
(2)k≠0 (當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數函數,這點,不一定向學生講述。)
由一次函數出發(fā),當常數b=0時,一次函數kx+b(k≠0)就成為:y=kx(k是常數,k≠0)我們把這樣的函數叫正比例函數。
在講述正比例函數時,首先,要注意適當復習小學學過的正比例關系,小學數學是這樣陳述的:
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。
寫成式子是(一定)
需指出,小學因為沒有學過負數,實際的例子都是k>0的例子,對于正比例函數,k也為負數。
其次,要注意引導學生找出一次函數與正比例函數之間的關系:正比例函數是特殊的一次函數。
課堂練習:
教科書13、4節(jié)練習第1題。
初中數學教案5
一、課題引入
為了讓學生更好地理解正數與負數的概念,作為教師有必要了解數系的發(fā)展.從數系的發(fā)展歷程來看,微積分的基礎是實數理論,實數的基礎是有理數,而有理數的基礎則是自然數.自然數為數學結構提供了堅實的基礎.
對于“數的發(fā)展”(也即“數的擴充”),有著兩種不同的認知體系.一是數的自然擴充過程,如圖1所示,即數系發(fā)展的自然的、歷史的體系,它反映了人類對數的認識的歷史發(fā)展進程;另一是數的邏輯擴充過程,如圖2所示,即數系發(fā)展所經歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數學家構造的一種邏輯體系,其中綜合反映了現代數學中許多思想方法.
二、課題研究
在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數量.這些數量不僅與5、5000等數量有關,而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的
為了準確表達諸如此類的一些具有相反意義的量,僅用小學學過的正整數、正分數、零,是不夠的如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的收入與支出是“意義相反”的兩回事,是不能用同一個數來表達的因此,為了準確表達支出5000元,就有必要引入了一種新數—負數.
我們把所學過的大于零的數,都稱為正數;而且還可以在正數的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數,讀作“正5”.
在正數的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構成的數統(tǒng)稱為負數.“-5”讀作“負5”,“-5000”讀作“負5000”.
于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數量就有了不同的表達方式.
利用正數與負數可以準確地表達或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數記作“+2”,把乙隊的凈勝球數記作“-2”.
借助實際例子能夠讓學生較好地理解為什么要引入負數,認識到負數是為了有效表達與實際生活相關的一些數量而引入的一種新數,而不是人為地“硬造”出來的一種“新數”.
三、鞏固練習
例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調,又該怎樣記錄這筆支出呢?
思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數或負數來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.
特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數量,都用正數來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的'數量則用負數來表示.
再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.
例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當天的收盤價與開盤價的漲跌情況如下表:單位:元
日期周二周三周四周五
開盤+0.16+0.25+0.78+2.12
收盤-0.23-1.32-0.67-0.65
當日收盤價
試在表中填寫周二到周五該股票的收盤價.
思路分析:以周二為例,表中數據“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數據“-0.23”則表示“周二該股票收盤時的收盤價比當天的開盤價降低了0.23元”.
因此,這五天該股票的開盤價與收盤價分別應該按如下的方式進行計算:
周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球隊以主客場的形式進行雙循環(huán)比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數分別是主客隊的進球數,例如3∶2表示主隊進3球客隊進2球.
初中數學教案6
學習目標:
1.理解平行線的意義兩條直線的兩種位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
學習重點:
探索和掌握平行公理及其推論.
學習難點:
對平行線本質屬性的理解,用幾何語言描述圖形的性質
一、學習過程:預習提問
兩條直線相交有幾個交點?
平面內兩條直線的位置關系除相交外,還有哪些呢?
(一)畫平行線
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據此方法練習畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
。ǘ┢叫泄砑巴普
1、思考:上圖中,①過點B畫直線a的'平行線,能畫 條;
、谶^點C畫直線a的平行線,能畫 條;
、勰惝嫷闹本有什么位置關系? 。
、谔剿鳎喝鐖D,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:
。ㄒ唬┻x擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )
A.0個 B.1個 C.2個 D.3個
。ǘ┨羁疹}:
1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:
。1)L1與L2 沒有公共點,則 L1與L2 ;
。2)L1與L2有且只有一個公共點,則L1與L2 ;
。3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。
4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
初中數學教案7
《正方形》教學設計
教學內容分析:
、艑W習特殊的平行四邊形—正方形,它的特殊的性質和判定。
⑵前面學習了平行四邊形、矩形菱形,類比他們的性質與判斷,有利于對正方形的研究。
⑶對本節(jié)的學習,繼續(xù)培養(yǎng)學生分類研究的思想,并且建立新舊知識的聯系,類比的基礎上進行歸納,梳理知識,進一步發(fā)展學生的推理能力。
學生分析:
、艑W生在小學初步認識了正方形,并且本節(jié)課之前,學生又學習了幾種平行四邊形,已經具備了觀察研究平行四邊形的經驗與知識基礎。
、茖W生在上幾節(jié)已有了推理的經歷,但是對于證明,學生的思維能力還不成熟,有待于提高。
教學目標:
、胖R與技能:了解正方形是特殊的平行四邊形,掌握它的性質和判定,會利用性質與判定進行簡單的說理。
、七^程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質與判定。通過運用提高學生的推理能力。
、乔楦袘B(tài)度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。
重點:掌握正方形的性質與判定,并進行簡單的推理。
難點:探索正方形的判定,發(fā)展學生的推理能
教學方法:類比與探究
教具準備:可以活動的四邊形模型。
一、教學分析
(一)教學內容分析
1.教材:義務教育課程標準實驗教科書《數學》九年級上冊(人民教育出版社)
2.本課教學內容的地位、作用,知識的前后聯系
《中心對稱圖形》是新人教版九年級數學上冊第二十三章第二單元第二節(jié)課的內容。本節(jié)教材屬于圖形變換的內容,是在學習了“軸對稱和軸對稱圖形”、“旋轉和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發(fā)學生探索精神和創(chuàng)新意識等方面都有重要意義。
3.本課教學內容的特點,重點分析體現新課程理念的特點
本節(jié)課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質。為使學生感受、理解知識的產生和發(fā)展過程,培養(yǎng)學生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉對稱圖形引出中心對稱圖形的概念;(2)引導學生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的性質,(3)通過多媒體演示使學生對中心對稱圖形的性質有直觀的表象。我認為這環(huán)環(huán)相扣、層層深入、循序漸進的活動過程,符合新課程標準理念和學生建構知識的規(guī)律,有利于激發(fā)學生的學習情趣。
(二)教學對象分析
1.學生所在地區(qū)、學校及班級的特色
我授課的班級是西安市閻良區(qū)振興中學九年級一班,作為九年級的學生,在圖形的對稱方面已經積累一些經驗,已經具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學生具有個性活潑,思維活躍,對各種事物充滿好奇,學習情緒易于調動,學習積極性高的特點,但學生的抽象思維能力個體差異較大,并且班級中已出現分化現象。
2.學生的年齡特點和認知特點
班級學生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現欲望較為強烈,喜好發(fā)表個人見解并且具有一定的合作交流、共同探討的意識與經驗,因此在課程內容的安排中,適當地創(chuàng)設一些具有一定思維深度的問題,加強學生在學習過程中自主探索與合作交流的`緊密結合,促使學生在探究的過程中,更多地獲得成功的體驗,感受學習思考的樂趣。
教學過程:
一:復習鞏固,建立聯系。
【教師活動】
問題設置:①平行四邊形、矩形,菱形各有哪些性質?
、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。
【學生活動】
學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。
【教師活動】
評析學生的結果,給予表揚。
總結性質從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。
二:動手操作,探索發(fā)現。
活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?
【學生活動】
學生拿出自備矩形紙片,動手操作,不難發(fā)現它是正方形。
設置問題:①什么是正方形?
觀察發(fā)現,從活動中體會。
【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。
【學生活動】認真觀察變化過程,思考之間的聯系,舉手回答設置問題。
設置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學生活動】
小組討論,分組回答。
【教師活動】
總結板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。
設置問題③正方形有那些性質?
【學生活動】
小組討論,舉手搶答。
【教師活動】
表揚學生發(fā)言,板書學生發(fā)現,㈡正方形每一條對角線平分一組對角
活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?
學生活動
折紙發(fā)現,說出自己的發(fā)現。得到正方形的又一性質。正方形是軸對稱圖形。
教師活動
演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內容,出示一下問題:你還可以怎樣填空?
()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。
學生活動
小組充分交流,表達不同的意見。
教師活動
評析活動,總結發(fā)現:
一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;
有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;
有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。
以上是正方形的判定方法。
正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現在哪里?生活中有哪些利用正方形的例子?
學生交流,感受正方形
三,應用體驗,推理證明。
出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個角是直角)
BC=AB=4cm(正方形的四條邊相等)
∴=45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC===4cm
∵AO=AC(正方形的對角線互相平分)
∴AO=×4=2cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學生活動
獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。
教師活動
總結解題方法,從正方形的性質全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。
出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學生活動
小組交流,分析題意,整理思路,指名口答。
教師活動
說明思路,從已知出發(fā)或者從已有的判定加以選擇。
四,歸納新知,梳理知識。
這一節(jié)課你有什么收獲?
學生舉手談論自己的收獲。
請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關系。
發(fā)表評論
教學目標:
情意目標:培養(yǎng)學生團結協(xié)作的精神,體驗探究成功的樂趣。
能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。
認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。
教學重點、難點
重點:等腰梯形性質的探索;
難點:梯形中輔助線的添加。
教學課件:PowerPoint演示文稿
教學方法:啟發(fā)法、
學習方法:討論法、合作法、練習法
教學過程:
。ㄒ唬⿲
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習:下列圖形中哪些圖形是梯形?(投影)
結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
。ǘ┑妊菪涡再|的探究
【探究性質一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質:等腰梯形的兩條對角線相等。
【探究性質三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質:同以底上的兩個內角相等,對角線相等
(三)質疑反思、小結
讓學生回顧本課教學內容,并提出尚存問題;
學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
初中數學教案8
教學目標
使學生進一步理解立方根的概念,并能熟練地進行求一個數的立方根的運算;
能用有理數估計一個無理數的大致范圍,使學生形成估算的意識,培養(yǎng)學生的估算能力;
經歷運用計算器探求數學規(guī)律的過程,發(fā)展合情推理能力。
教學難點
用有理數估計一個無理的大致范圍。
知識重點
用有理數估計一個無理的大致范圍。
對于計算器的使用,在教學中采用學生自己閱讀計算器的說明書、自己操作練習來掌握用計算器進行開立方運算的方法,并讓學生互相交流,讓學生親身體會到利用計算器不僅能給運算帶來很大的方便,也給探求數量間的關系與變化帶來方便。在教學過程中,教師要關注學生能否通過閱讀,掌握用計算器進行開立方運算的簡單操作;能否利用計算器探究數量間的關系,從而尋找出數量的變化關系。
使用計算器進行復雜運算,可以使學生學習的重點更好地集中到理解數學的本質上來,而估算也是一種具有實際應用價值的運算能力,在本節(jié)課的課堂教學中綜合運用筆算、計算器和估算等培養(yǎng)學生的運算能力。知識點一:多邊形的概念
、哦噙呅味x:在平面內,由一些線段首位順次相接組成的圖形叫做________、
如果一個多邊形由n條線段組成,那么這個多邊形叫做____________。(一個多邊形由幾條線段組成,就叫做幾邊形、)
多邊形的表示:用表示它的各頂點的大寫字母來表示,表示多邊形必須按順序書寫,可按順時針或逆時針的順序。如五邊形ABCDE。
、贫噙呅蔚倪、頂點、內角和外角、
多邊形相鄰兩邊組成的角叫做______________,多邊形的邊與它的鄰邊的延長線組成的角叫做________________、
⑶多邊形的對角線
連接多邊形的不相鄰的兩個頂點的線段,叫做___________________、畫一個五邊形ABCDE,并畫出所有的對角線。知識點二:凸多邊形與凹多邊形在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的______,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫CD所在直線,整個多邊形不都在這條直線的同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是______多邊形、
知識點二:正多邊形
各個角都相等,各條邊都相等的多邊形叫做_____________、
探究多邊形的對角線條數
知識點三:多邊形的內角和公式推導
1、我們知道三角形的內角和為__________、
2、我們還知道,正方形的四個角都等于____°,那么它的內角和為_____°,同樣長方形的內角和也是______°、
3、正方形和長方形都是特殊的四邊形,其內角和為360度,那么一般的四邊形的內角和為多少呢?
4、畫一個任意的四邊形,用量角器量出它的四個內角,計算它們的和,與同伴交流你的結果、從中你得到什么結論?
探究1:任意畫一個四邊形,量出它的4個內角,計算它們的和、再畫幾個四邊形,?量一量、算一算、你能得出什么結論?能否利用三角形內角和等于180?°得出這個結論?結論:。
探究2:從上面的問題,你能想出五邊形和六邊形的`內角和各是多少嗎?觀察圖3,?請?zhí)羁眨?/p>
。1)從五邊形的一個頂點出發(fā),可以引_____條對角線,它們將五邊形分為_____個三角形,五邊形的內角和等于180°×______、
。2)從六邊形的一個頂點出發(fā),可以引_____條對角線,它們將六邊形分為_____個三角形,六邊形的內角和等于180°×______、探究3:一般地,怎樣求n邊形的內角和呢?請?zhí)羁眨?/p>
從n邊形的一個頂點出發(fā),可以引____條對角線,它們將n邊形分為____個三角形,n邊形的內角和等于180°×______、
綜上所述,你能得到多邊形內角和公式嗎?設多邊形的邊數為n,則
n邊形的內角和等于______________、
想一想:要得到多邊形的內角和必需通過“___________定理”來完成,就是把一個多邊形分成幾個三角形、除利用對角線把多邊形分成幾個三角形外,還有其他的分法嗎?你會用新的分法得到n邊形的內角和公式嗎?
知識點四:多邊形的外角和
探究4:如圖8,在六邊形的每個頂點處各取一個外角,?這些外角的和叫做六邊形的外角和、六邊形的外角和等于多少?
問題:如果將六邊形換為n邊形(n是大于等于3的整數),結果還相同嗎?多邊形的外角和定理:。理解與運用
例1如果一個四邊形的一組對角互補,那么另一組對角有什么關系?已知:四邊形ABCD的∠A+∠C=180°、求:∠B與∠D的關系、
自我檢測:
。ㄒ唬、判斷題、
1、當多邊形邊數增加時,它的內角和也隨著增加、()
2、當多邊形邊數增加時、它的外角和也隨著增加、()
3、三角形的外角和與一多邊形的外角和相等、()
4、從n邊形一個頂點出發(fā),可以引出(n一2)條對角線,得到(n一2)個三角形、()
5、四邊形的四個內角至少有一個角不小于直角、()
。ǘ⑻羁疹}、
1、一個多邊形的每一個外角都等于30°,則這個多邊形為
2、一個多邊形的每個內角都等于135°,則這個多邊形為
3、內角和等于外角和的多邊形是邊形、
4、內角和為1440°的多邊形是
5、若多邊形內角和等于外角和的3倍,則這個多邊形是邊形、
6、五邊形的對角線有
7、一個多邊形的內角和為4320°,則它的邊數為
8、多邊形每個內角都相等,內角和為720°,則它的每一個外角為
9、四邊形的∠A、∠B、∠C、∠D的外角之比為1:2:3:4,那么∠A:∠B:∠C:∠、
10、四邊形的四個內角中,直角最多有個,鈍角最多有銳角最
。ㄈ┙獯痤}
1、一個八邊形每一個頂點可以引幾條對角線?它共有多少條對角線?n邊形呢?
2、在每個內角都相等的多邊形中,若一個外角是它相鄰內角的則這個多邊形是幾邊形?
3、若一個多邊形的內角和與外角和的比為7:2,求這個多邊形的邊數。
4、一個多邊形的每一個內角都等于其相等外角的
5、一個多邊形少一個內角的度數和為2300°、
(1)求它的邊數;
(2)求少的那個內角的度數、
初中數學教案9
重難點分析
本節(jié)的重點是的性質和判定定理。是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質和不同于平行四邊形的判定方法。的這些性質和判定定理即是平行四邊形性質與判定的延續(xù),又是以后要學習的正方形的基礎。
本節(jié)的難點是性質的靈活應用。由于是特殊的平行四邊形,所以它不但具有平行四邊形的性質,同時還具有自己獨特的性質。如果得到一個平行四邊形是,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,教師在教學過程中應給予足夠重視。
教法建議
根據本節(jié)內容的特點和與平行四邊形的關系,建議教師在教學過程中注意以下問題:
1.學生在小學時接觸過一些,可由小學學過的知識作為引入。
2.在現實中的實例較多,在講解的性質和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應用了哪些性質和判定,既增加了學生的參與感又鞏固了所學的知識.
3.如果條件允許,教師在講授這節(jié)內容前,可指導學生按照教材148頁圖4-33所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.
4.在對性質的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內進行整理、歸納.
5.由于和的性質定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.
6.在性質應用講解中,為便于理解掌握,教師要注意題目的層次安排。
一、教學目標
1.掌握概念,知道與平行四邊形的關系.
2.掌握的性質.
3.通過運用知識解決具體問題,提高分析能力和觀察能力.
4.通過教具的演示培養(yǎng)學生的學習興趣.
5.根據平行四邊形與矩形、的從屬關系,通過畫圖向學生滲透集合思想.
6.通過性質的學習,體會的圖形美.
二、教法設計
觀察分析討論相結合的方法
三、重點·難點·疑點及解決辦法
1.教學重點:的性質定理.
2.教學難點:把的性質和直角三角形的知識綜合應用.
3.疑點:與矩形的性質的區(qū)別.
四、課時安排
1課時
五、教具學具準備
教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設計
教師演示教具、創(chuàng)設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥
七、教學步驟
【復習提問】
1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
2.矩形中對角線與大邊的夾角為,求小邊所對的兩條對角線的夾角.
3.矩形的一個角的平分線把較長的邊分成、,求矩形的'周長.
【引入新課】
我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,這時可將事先按課本中圖4-38做成的一個短邊也可以活動的教具進行演示,如圖,改變平行四邊形的邊,使之一組鄰進相等,引出概念.
【講解新課】
1.定義:有一組鄰邊相等的平行四邊形叫做.
講解這個定義時,要抓住概念的本質,應突出兩條:
(1)強調是平行四邊形.
。2)一組鄰邊相等.
2.的性質:
教師強調,既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質,此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質.
下面研究的性質:
師:同學們根據的定義結合圖形猜一下有什么性質(讓學生們討論,并引導學生分別從邊、角、對角線三個方面分析).
生:因為是有一組鄰邊相等的平行四邊形,所以根據平行四邊形對邊相等的性質可以得到.
性質定理1:的四條邊都相等.
由的四條邊都相等,根據平行四邊形對角線互相平分,可以得到
性質定理2:的對角線互相垂直并且每一條對角線平分一組對角.
引導學生完成定理的規(guī)范證明.
師:觀察右圖,被對角線分成的四個直角三角形有什么關系?
生:全等.
師:它們的底和高和兩條對角線有什么關系?
生:分別是兩條對角線的一半.
師:如果設的兩條對角線分別為、,則的面積是什么?
生:
教師指出當不易求出對角線長時,就用平行四邊形面積的一般計算方法計算面積.
例2已知:如右圖,是△的角平分線,交于,交于.
求證:四邊形是.
。ㄒ龑W生用定義來判定.)
例3已知的邊長為,對角線,相交于點,如右圖,求這個的對角線長和面積.
。1)按教材的方法求面積.
(2)還可以引導學生求出△一邊上的高,即的高,然后用平行四邊形的面積公式計算的面積.
【總結、擴展】
1.小結:(打出投影)(圖4)
。1)、平行四邊形、四邊形的從屬關系:
(2)性質:圖5
、倬哂衅叫兴倪呅蔚乃行再|.
②特有性質:四條邊相等;對角線互相垂直,且平分每一組對角.
八、布置作業(yè)
教材P158中6、7、8,P196中10
九、板書設計
標題
定義……
性質例2……小結:
性質定理1:……例3…………
性質定理2:……
十、隨堂練習
教材P151中1、2、3
補充
1.的兩條對角線長分別是3和4,則周長和面積分別是___________、___________.
2.周長為80,一對角線為20,則相鄰兩角的度數為___________、____________.
初中數學教案10
課題
正比例函數
一、教學目標
1、通過案例理解正比例函數,能列出正比例函數關系式
2、教會學生應用正比例函數解決生活實際問題的能力
二、教學重點
理解正比例函數的概念
三、教學難點
利用正比例函數解決生活實際問題
四、教學過程
【提出問題】
《阿甘正傳》是一部勵志影片。片中阿甘曾跑步繞美國數圈,假設他從德州到加州行進了21000千米,耗費了他150天時間。
(1)阿甘大約平均每天跑步多少千米?
(2)阿甘的行程y(km)與時間x(天)之間有什么關系?
(3)阿甘一個月(30天)的行程是多少千米?
【生】列算式回答【師】點評總結
2。寫出下列變量間的函數表達式
。1)正方形的周長l和半徑r之間的.關系
【進一步抽象問題讓學生思考】
。2)大米每千克四元,則售價y元與數量x(kg)的函數關系式是什么?
。3)下列函數關系式有什么共同點?(小組合作)
【分析共同點和不同點,找出規(guī)律】(1)y=200x
。2) l=2∏r (3) m=7。8V 【生回答,師點評】 【引入新課】
1。正比例函數的概念:
一般地,形如y=kx (k≠0)的函數,叫做正比例函數,其中k叫做比例系數!景鍟拍睿龑W生分析正比例函數的定義】
2 【例題講解】
例1在同一坐標系里,畫出下列函數的圖像:y=0。5x y=x y=3x解:【略】
【掌握函數圖像的畫法:列表,描點,連線】 3.練習
。1)已知正比例函數y=kx。當x=3時y=6 。求k的值
。2)一種筆記本每本的單價為3元。則銷售金額y元與銷售量x之間的關系式是怎樣的?當銷售金額為360元時,則售出了多少本這種筆記本?
四、小結
五、課外作業(yè)
【反思】
由于函數的概念比較抽象,學生不容易理解。而理解函數的概念是教學的重點。這節(jié)課首先通過實例,回顧函數的概念,其次抽象提出正比例函數關系式,由學生觀察得到特點,然后引出正比例函數的概念和特點,再通過練習加以鞏固,最后通過小組討論利用正比例函數解決生活中的問題。
初中數學教案11
【教學目標】
1進一步認識方程及其解的概念。
2理解一元一次方程的概念,會根據簡單數量關系列一元一次方程。 3體驗用嘗試、檢驗解一元一次方程的思想與方法。
【教學重點】
一元一次方程的概念和解法貫穿整章,因此“一元一次方程的概念”與“嘗試檢驗法”求解是本節(jié)教學的重點。
【教學難點】
用嘗試、檢驗的方法解一元一次方程的過程比較復雜,是本節(jié)教學的難點。
【學習準備】
1.下面哪些式子是方程?
。1)3
(2)1;
。2)x31;
(3)3x5;
。4)2xy4;
。5)x31;
(6)3x14.
2.方程與等式有什么聯系與區(qū)別?
方程是解決實際問題的一個重要數學模型,需要我們進一步學習研究。
【課本導學】
思考一閱讀并解答課本第114頁“合作學習”的三個問題,思考:
1.列方程就是根據問題中的相等關系,寫出含有未知數的等式。
。1)原價為50元的衣服,按8折銷售,售價是多少元?原價若為x元呢?
。2)你能舉例說明你對“物體在水下,水深每增加10米,物體承受的壓力就增加
。3)張明投進x個,那么“小杰投進的球的個數”可以怎樣表示?“3人一共投進的球數”怎樣表示?
你是怎么理解“三人平均每人投進14個球”這句話的?
思考二觀察你所列的方程,這些方程之間有哪些共同的特點?請思考:
1.你可以從哪些角度對這些方程進行觀察呢?說說你的想法。
2.具有“合作學習”中所列方程一樣特點的方程叫做一元一次方程,你能說說這個名稱中“元”和“次”的含義嗎?[練習]完成課本第115頁課內練習
1.『歸納』判斷一個方程是不是一元一次方程應抓住哪幾個關鍵特點?
思考三閱讀課本第114頁倒數3行至第115頁正文結束,并思考下面的問題:
1.(1)如果一個數是方程有什么關系?
。2)如果一個數是方程350應該是多少?
。3)要判斷一個數是不是方程3m?2?1?m的'解,你會怎么做?2.對方程2x12
14的解,這個數代入方程的左邊計算得到的值與14 3 1
x500的解,這個數代入方程的左邊計算得到的值10 2x12
14進行嘗試求解時,你認為x必須是整數嗎
x可以取21嗎20呢?x可以取10或者比10還小的值嗎?為什么?說說你的想法。
[練習]完成課本第115頁課內練習
2.『歸納』1.檢驗一個數是不是一元一次方程的解的步驟有哪些?
2.用嘗試檢驗的方法解一元一次方程,你覺得關鍵的步驟有哪些?【盤點收獲】
【學習檢測】
1.下列說法正確的是()
。╝)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程
2.下列式子中,屬于一元一次方程的是()(a)5x 1
。╞)ab8(c)1257(d)5x82x9 3
3.設某數為x,根據下列條件列出求該數的方程:
。1)某數加上1,再乘以2,得6.
。2)某數與7的和的2倍等于10.
。3)某數的5倍比某數小3.
4.某校初一年級328名師生乘車外出春游,己有2輛校車可乘坐64人,還需租用44座的客車多少輛?
設還需租用x輛,則可列出方程44x+64=328.
(1)寫出一個方程,使它的解是
2.【作業(yè)布置】略
【課后反思】
課堂教學總是在“預設”與“生成”間交融進行,如何根據學情做好充分的預設,又根據課堂生成靈活應變,這既能反映教師的專業(yè)素養(yǎng),又能展示教師的教學功底.反芻本課,筆者認為還有以下幾方面值得反思與改進:
1.忽略課堂“火花”,錯失追問良機
在交流對方程的共同特征探討的環(huán)節(jié),有一個同學直接說出了“一元一次方程”的名稱.【片斷實錄】
師:討論好了吧.哪個小組先來說說你們所歸納的特點.生8:這些等式都含有未知數的,用x或y來表示.師(板書):嗯,都含有未知數,這個未知數呢,有的地方是x,有的地方是y.還有呢?生8:還有黑板上的所有等式都是一元一次方程.
師(驚喜):嗯,你都知道了所有的等式都是我們今天接下來要具體研究的一元一次方程,這位同學已經預習了呢.我們看,剛才這位同學歸納了:都含有未知數.那么請同學們看得更仔細一點,未知數在這里具有什么特征呢?
不難看出,筆者在這里沒有很好地抓住學生的課堂即時生成資源,用一句“嗯,……,這位同學已經預習了呢.”輕輕帶過,仍然拉著學生回到了預設的軌道“……,請同學們看得更仔細一點,未知數在這里具有什么特征呢?”如果當時直接問她“那么請你講講什
初中數學教案12
一、 教學目標
1、 知識與技能目標
掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。
2、 能力與過程目標
經歷探索、歸納有理數乘法法則的過程,發(fā)展學生觀察、歸納、猜測、驗證等能力。
3、 情感與態(tài)度目標
通過學生自己探索出法則,讓學生獲得成功的喜悅。
二、 教學重點、難點
重點:運用有理數乘法法則正確進行計算。
難點:有理數乘法法則的探索過程,符號法則及對法則的理解。
三、 教學過程
1、 創(chuàng)設問題情景,激發(fā)學生的求知欲望,導入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?
學生:26米。
教師:能寫出算式嗎?學生:……
教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
。1)教師出示以下問題,學生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。
、 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結果:向 運動 米
2 ×3=
、 -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結果:向 運動 米
-2 ×3=
、 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結果:向 運動 米
2 ×(-3)=
、 (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結果:向 運動 米
。-2) ×(-3)=
。2)學生歸納法則
①符號:在上述4個式子中,我們只看符號,有什么規(guī)律?
(+)×(+)=( ) 同號得
。-)×(+)=( ) 異號得
。+)×(-)=( ) 異號得
(-)×(-)=( ) 同號得
、诜e的.絕對值等于 。
、廴魏螖蹬c零相乘,積仍為 。
。3)師生共同用文字敘述有理數乘法法則。
3、 運用法則計算,鞏固法則。
。1)教師按課本P75 例1板書,要求學生述說每一步理由。
。2)引導學生觀察、分析例子中兩因數的關系,得出兩個有理數互為倒數,它們的積為 。
。3)學生做練習,教師評析。
(4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。
初中數學教案13
教學目標:
1、理解并掌握三角形中位線的概念、性質,會利用三角形中位線的性質解決有關問題。
2、經歷探索三角形中位線性質的`過程,讓學生實現動手實踐、自主探索、合作交流的學習過程。
3、通過對問題的探索研究,培養(yǎng)學生分析問題和解決問題的能力以及思維的靈活性。
4、培養(yǎng)學生大膽猜想、合理論證的科學精神。
教學重點:
探索并運用三角形中位線的性質。
教學難點:
運用轉化思想解決有關問題。
教學方法:
創(chuàng)設情境——建立數學模型——應用——拓展提高
教學過程:
情境創(chuàng)設:測量不可達兩點距離。
探索活動:
活動一:剪紙拼圖。
操作:怎樣將一張三角形紙片剪成兩部分,使分成的兩部分能拼成一個平行四邊形。
觀察、猜想: 四邊形BCFD是什么四邊形。
探索: 如何說明四邊形BCFD是平行四邊形?
活動二:探索三角形中位線的性質。
應用
練習及解決情境問題。
例題教學
操作——猜想——驗證
拓展:數學實驗室
小結:布置作業(yè)。
初中數學教案14
教學目的
1.通過對多個實際問題的分析,使學生體會到一元一次方程作為實際問題的數學模型的作用。
2.使學生會列一元一次方程解決一些簡單的應用題。
3.會判斷一個數是不是某個方程的解。
重點、難點
1.重點:會列一元一次方程解決一些簡單的應用題。
2.難點:弄清題意,找出“相等關系”。
教學過程
一、復習提問
一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?
解:設小紅能買到工本筆記本,那么根據題意,得1.2x=6
因為1.2×5=6,所以小紅能買到5本筆記本。
二、新授
問題1:某校初中一年級328名師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛?(讓學生思考后,回答,教師再作講評)
算術法:(328-64)÷44=264÷44=6(輛)
列方程:設需要租用x輛客車,可得44x+64=328
解這個方程,就能得到所求的結果。
問:你會解這個方程嗎?試試看?
問題2:在課外活動中,張老師發(fā)現同學們的.年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”
通過分析,列出方程:13+x=(45+x)
問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)?
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數學思想方法。也可以據此檢驗一下一個數是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發(fā)現了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數,該從何試起?如何試驗根本無法人手,又該怎么辦?
三、鞏固練習
教科書第3頁練習1、2。
四、小結
本節(jié)課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。
五、作業(yè)
教科書第3頁,習題6.1第1、3題。
初中數學教案15
問題描述:
初中數學教學案例
初中的,隨便那個年級.20xx字.案例和反思
1個回答 分類:數學 20xx-11-30
問題解答:
我來補答
2.3 平行線的性質
一、教材分析:
本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章 第3節(jié) 平行線的性質,它是平行線及直線平行的繼續(xù),是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分.
二、教學目標:
知識與技能:掌握平行線的性質,能應用性質解決相關問題.
數學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程.
解決問題:通過探究平行線的性質,使學生形成數形結合的數學思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神.
情感態(tài)度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數學的熱情和勇于探索、鍥而不舍的精神.
三、教學重、難點:
重點:平行線的性質
難點:“性質1”的探究過程
四、教學方法:
“引導發(fā)現法”與“動像探索法”
五、教具、學具:
教具:多媒體課件
學具:三角板、量角器.
六、教學媒體:大屏幕、實物投影
七、教學過程:
(一)創(chuàng)設情境,設疑激思:
1.播放一組幻燈片.內容:①火車行駛在鐵軌上;②游泳池;③橫格紙.
2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?
學生活動:
思考回答.①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;
教師:首先肯定學生的回答,然后提出問題.
問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?
引出課題——平行線的性質.
。ǘ⿺敌谓Y合,探究性質
1.畫圖探究,歸納猜想
任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).
問題一:指出圖中的同位角,并度量這些角,把結果填入下表:
第一組
第二組
第三組
第四組
同位角
∠1
∠5
角的`度數
數量關系
學生活動:畫圖——度量——填表——猜想
結論:兩直線平行,同位角相等.
問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?
學生:探究、討論,最后得出結論:仍然成立.
2.教師用《幾何畫板》課件驗證猜想
3.性質1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)
。ㄈ┮晁伎,培養(yǎng)創(chuàng)新
問題三:請判斷內錯角、同旁內角各有什么關系?
學生活動:獨立探究——小組討論——成果展示.
教師活動:引導學生說理.
因為a‖b 因為a‖b
所以∠1=∠2 所以∠1=∠2
又 ∠1=∠3 又 ∠1+∠4=180°
所以∠2=∠3 所以∠2+∠4=180°
語言敘述:
性質2 兩條直線被第三條直線所截,內錯角相等.
。▋芍本平行,內錯角相等)
性質3 兩條直線被第三條直線所截,同旁內角互補.
。▋芍本平行,同旁內角互補)
。ㄋ模⿲嶋H應用,優(yōu)勢互補
1.(搶答)
。1)如圖,平行線AB、CD被直線AE所截
、偃簟1 = 110°,則∠2 = °.理由:.
②若∠1 = 110°,則∠3 = °.理由:.
、廴簟1 = 110°,則∠4 = °.理由:.
。2)如圖,由AB‖CD,可得( )
。ˋ)∠1=∠2 (B)∠2=∠3
。–)∠1=∠4 (D)∠3=∠4
(3)如圖,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=( )
。ˋ) 180°(B)270° (C)360° (D)540°
。4)誰問誰答:如圖,直線a‖b,
如:∠1=54°時,∠2= .
學生提問,并找出回答問題的同學.
2.(討論解答)
如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,
∠B=115°,求梯形另外兩角分別是多少度?
(五)概括存儲(小結)
1.平行線的性質1、2、3;
2.用“運動”的觀點觀察數學問題;
3.用數形結合的方法來解決問題.
。┳鳂I(yè) 第69頁 2、4、7.
八、教學反思:
、俳痰霓D變:本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者.在引導學生畫圖、測量、發(fā)現結論后,利用幾何畫板直觀地、動態(tài)地展示同位角的關系,激發(fā)學生自覺地探究數學問題,體驗發(fā)現的樂趣.
、趯W的轉變:學生的角色從學會轉變?yōu)闀䦟W.本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境.
、壅n堂氛圍的轉變:整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以“對話”、“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現的價值.
【初中數學教案】相關文章:
初中數學教案02-21
初中數學教案[經典]02-21
初中的數學教案05-06
角初中數學教案12-30
人教版初中數學教案07-17
初中數學教案最新09-05
初中數學教案模板11-02
【薦】初中數學教案11-26
【精】初中數學教案11-21
初中數學教案《圓》03-05