- 線段的垂直平分線八年級(jí)數(shù)學(xué)教案 推薦度:
- 相關(guān)推薦
《線段的垂直平分線》教案
作為一位不辭辛勞的人民教師,總歸要編寫教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編整理的《線段的垂直平分線》教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
《線段的垂直平分線》教案 1
教學(xué)目的:
1、使理解線段的垂直平分線的性質(zhì)定理及逆定理,掌握這兩個(gè)定理的關(guān)系并會(huì)用這兩個(gè)定理解決有關(guān)幾何問(wèn)題。
2、了解線段垂直平分線的軌跡問(wèn)題。
3、結(jié)合教學(xué)內(nèi)容培養(yǎng)學(xué)生的動(dòng)作、形象和抽象。
教學(xué)重點(diǎn):
線段的垂直平分線性質(zhì)定理及逆定理的引入證明及運(yùn)用。
教學(xué)難點(diǎn):
線段的垂直平分線性質(zhì)定理及逆定理的關(guān)系。
教學(xué)關(guān)鍵:
1、垂直平分線上所有的點(diǎn)和線段兩端點(diǎn)的距離相等。
2、到線段兩端點(diǎn)的距離相等的所有點(diǎn)都在這條線段的垂直平分線上。
教具:
投影儀及投影膠片。
教學(xué)過(guò)程:
一、提問(wèn)
1、角平分線的性質(zhì)定理及逆定理是什么?
2、怎樣做一條線段的垂直平分線?
二、新課
1、請(qǐng)同學(xué)們?cè)诰毩?xí)本上做線段AB的垂直平分線EF(請(qǐng)一名同學(xué)在黑板上做)。
2、在EF上任取一點(diǎn)P,連結(jié)PA、PB量出PA=?PB=?引導(dǎo)學(xué)生觀察這兩個(gè)值有什么關(guān)系?
通過(guò)學(xué)生的觀察、分析得出結(jié)果 PA=PB,再取一點(diǎn)P試一試仍然有PA=PB,引導(dǎo)學(xué)生猜想EF上的所有點(diǎn)和點(diǎn)A、點(diǎn)B的距離都相等,再請(qǐng)同學(xué)把這一結(jié)論敘述成命題(用幻燈展示)。
定理:線段的垂直平分線上的點(diǎn)和這條線段的兩個(gè)端點(diǎn)的距離相等。
這個(gè)命題,是我們通過(guò)作圖、觀察、猜想得到的,還得在理論上加以證明是真命題才能做為定理。
三、舉例(用幻燈展示)
例:已知,ΔABC中,邊AB,BC的垂直平分線相交于點(diǎn)P,求證:PA=PB=PC。
證明:
∵點(diǎn)P在線段AB的垂直平分線上
∴PA=PB
同理PB=PC
∴PA=PB=PC
由例題PA=PC知點(diǎn)P在AC的'垂直平分線上,所以三角形三邊的垂直平分線交于一點(diǎn)P,這點(diǎn)到三個(gè)頂點(diǎn)的距離相等。
四、小結(jié)
正確的運(yùn)用這兩個(gè)定理的關(guān)鍵是區(qū)別它們的條件與結(jié)論,加強(qiáng)證明前的分析,找出證明的途徑。定理的作用是可證明兩條線段相等或點(diǎn)在線段的垂直平分線上。
《線段的垂直平分線》教案 2
教學(xué)目標(biāo):
1.能夠利用直尺和圓規(guī)作已知線段的垂直平分線;已知底邊及底邊上的高,能夠利用直尺和圓規(guī)作出等腰三角形。知道為什么這樣做圖,提高熟練地使用直尺和圓規(guī)作圖的技能。
2.通過(guò)探索、猜測(cè)、證明的過(guò)程,進(jìn)一步拓展學(xué)生的推理證明意識(shí)和能力。
教學(xué)重點(diǎn):
作已知線段的`垂直平分線。
教學(xué)難點(diǎn):
理解三線共點(diǎn)的證明方法。
教學(xué)過(guò)程:
引入:
剪一個(gè)三角形紙片,通過(guò)折疊找出每條邊的垂直平分線,觀察這三條垂直平分線,你發(fā)現(xiàn)了什么?當(dāng)利用尺規(guī)作出三角形三條邊的垂直平分線時(shí),你是否也發(fā)現(xiàn)了同樣的結(jié)論?
定理:三角形三邊的垂直平分線相交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等。
證明:在△ABC中,設(shè)AB、BC的垂直平分線相交于點(diǎn)P,連接AP、BP、CP,
∵點(diǎn)P在線段AB的垂直平分線上
∴PA=PB(線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)距離相等)
同理:PB=PC
∴PA=PC
∴點(diǎn)P在AC的垂直平分線上
。ǖ揭粭l線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上)。
∴AB,BC,AC的垂直平分線相交于點(diǎn)P。
議一議:
1、已知三角形的一條邊及這條邊上的高,你能作出三角形嗎?如果能,能作幾個(gè)?所作的三角形都全等嗎?(這樣的三角形能作出無(wú)數(shù)多個(gè),它們不都全等)
2、已知等腰三角形底邊及底邊上的高,你能用尺規(guī)作出等腰三角形嗎?能作幾個(gè)?(滿足條件的等腰三角形可和出兩個(gè),分加位于已知邊的兩側(cè),它們?nèi)龋?/p>
《線段的垂直平分線》教案 3
教學(xué)目標(biāo):
1.要求學(xué)生掌握線段垂直平分線的性質(zhì)定理及判定定理,能夠利用這兩個(gè)定理解決一些問(wèn)題。
2.能夠證明線段垂直平分線的性質(zhì)定理及判定定理。
3.通過(guò)探索、猜測(cè)、證明的過(guò)程,進(jìn)一步拓展學(xué)生的推理證明意識(shí)和能力。
教學(xué)重點(diǎn):
線段垂直平分線性質(zhì)定理及其逆定理。
教學(xué)難點(diǎn):
線段垂直平分線的性質(zhì)定理及其逆定理的內(nèi)涵和證明。
教學(xué)過(guò)程:
我們?cè)谜奂埖霓k法得到:線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離睛等,你能證明這一結(jié)論嗎?
一、線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的`距離相等
1.讓學(xué)生把準(zhǔn)備好的方方正正的紙拿出來(lái),按照下圖的樣子進(jìn)行對(duì)折,并比較對(duì)折之后的折痕EB和E’B、FB和F’B的關(guān)系。
2.讓學(xué)生說(shuō)出他們觀察猜測(cè)的結(jié)果是什么,肯定他們的發(fā)現(xiàn),引導(dǎo)學(xué)生思考:這樣一個(gè)結(jié)論是比較直觀和明顯的,我們可以說(shuō)出兩組邊分別是相等的,但是,我們可以用觀察說(shuō)服別人嗎?
3.給學(xué)生留出時(shí)間和空間思考如何把猜想變成事實(shí)。學(xué)生可以討論交流不同的方法。提示學(xué)生在證明之前,要把文字語(yǔ)言變成數(shù)學(xué)語(yǔ)言,根據(jù)圖形寫出已知和求證。
定理:線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等。
已知:直線MN⊥AB,垂足是C,且AC=BC,P是MN上的任意一點(diǎn)。
求證:PA=PB。
證明:∵M(jìn)N⊥AB,
∴∠PCA=∠PCB=90°
∵AC=BC,PC=PC
∴△PCA≌△PCB(SAS)
∴PA=PB(全等三角形的對(duì)應(yīng)邊相等)
想一想,你能寫出上面這個(gè)定理的逆合題嗎?
它是真命題嗎?如果是請(qǐng)證明.
【《線段的垂直平分線》教案】相關(guān)文章:
線段垂直平分線教學(xué)反思范文(精選10篇)10-21
線段的垂直平分線(八年級(jí))數(shù)學(xué)教案12-17
《認(rèn)識(shí)線段》教案01-19
認(rèn)識(shí)線段教案01-03
3.2 直線、射線、線段教案12-16
§4.1線段、射線、直線 教案12-16
比較線段的長(zhǎng)短12-13