- 相關(guān)推薦
橢圓及其標準方程的教案設(shè)計
一、教學(xué)內(nèi)容分析(簡要說明課題來、學(xué)習(xí)內(nèi)容、這節(jié)課的價值以及學(xué)習(xí)內(nèi)容的重要性)
本節(jié)課是高中新課程人教A版數(shù)學(xué)選修1—1第二章第一單元《橢圓及其標準方程》的第一課時.
本節(jié)的內(nèi)容是繼學(xué)習(xí)圓之后運用 “曲線和方程”理論解決具體二次曲線的又一實例.從知識上說,它是對前面所學(xué)的運用坐標法研究曲線的又一次實際演練,同時它也是進一步研究橢圓幾何性質(zhì)的基礎(chǔ);從方法上說,推導(dǎo)橢圓的標準方程的方法對雙曲線、拋物線方程的推導(dǎo)具有直接的類比作用,因此,這節(jié)課有承前啟后的作用,是本節(jié)乃至本章的重點。
二、教學(xué)目標(從知識與技能、過程與方法、情感態(tài)度與價值觀三個維度對該課題預(yù)計要達到的教學(xué)目標做出一個整體描述)
基于新課標的要求,結(jié)合本節(jié)內(nèi)容的地位,我提出教學(xué)目標如下:
(1)知識與技能:
、倭私鈾E圓的實際背景,經(jīng)歷從具體情景中抽象出橢圓模型的過程; ②使學(xué)生理解橢圓的定義,掌握橢圓的標準方程及其推導(dǎo)過程.
(2)過程與方法:
、僮寣W(xué)生親身經(jīng)歷橢圓定義和標準方程的獲取過程,掌握求曲線方程的方法和數(shù)形結(jié)合的思想; ②學(xué)會用運動變化的觀點研究問題,提高運用坐標法解決幾何問題的能力.
(3)情感態(tài)度與價值觀:
、偻ㄟ^主動探究、合作學(xué)習(xí),感受探索的樂趣與成功的喜悅;培養(yǎng)學(xué)生認真參與、積極交流的主體意識和樂于探索創(chuàng)新的科學(xué)精神.
②通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學(xué)的理性和嚴謹,
、弁ㄟ^橢圓知識的學(xué)習(xí),進一步體會到數(shù)學(xué)知識的和諧美,幾何圖形的對稱美;提高學(xué)生的審美情趣.
三、學(xué)習(xí)者特征分析(說明學(xué)習(xí)者在知識與技能、過程與方法、情感態(tài)度等三個方面的學(xué)習(xí)準備(學(xué)習(xí)起點),以及學(xué)生的學(xué)習(xí)風(fēng)格。最好說明教師是以何種方式進行學(xué)習(xí)者特征分析,比如說是通過平時的觀察、了解;或是通過預(yù)測題目的編制使用等)
1.能力分析
、賹W(xué)生已初步掌握用坐標法研究直線和圓的方程,②對含有兩個根式方程的化簡能力薄弱。
2.認知分析
、賹W(xué)生已初步熟悉求曲線方程的基本步驟,②對曲線的方程的概念有一定的了解。
3.情感分析
學(xué)生具有積極的學(xué)習(xí)態(tài)度,強烈的探究欲望,能主動參與研究。
改變學(xué)生的學(xué)習(xí)方式是高中課改追求的基本理念。遵循以學(xué)生為主體,教師為主導(dǎo),發(fā)展為主旨的現(xiàn)代教育原則。我采用了通過創(chuàng)設(shè)情境,充分調(diào)動學(xué)生已有的學(xué)習(xí)經(jīng)驗,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題;以學(xué)生主動探索、積極參與、共同交流與協(xié)作為主體,在教師的引導(dǎo)下,學(xué)生“跳一跳”就能摘得果實;于問題的分析和解決中實現(xiàn)知識的建構(gòu)和發(fā)展。通過不斷探究、發(fā)現(xiàn),讓學(xué)生的學(xué)習(xí)過程成為心靈愉悅的主動過程,使師生的生命力在課堂上得到充分的發(fā)揮。激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新能力,幫助學(xué)生養(yǎng)成獨立思考積極探索的習(xí)慣。
四、教學(xué)策略選擇與設(shè)計(說明本課題設(shè)計的基本理念、主要采用的教學(xué)與活動策略)
橢圓的標準方程共兩課時,第一課時所研究的是橢圓標準方程的建立及其簡單運用,涉及的數(shù)學(xué)方法有觀察、比較、歸納、猜想、推理驗證等,我校學(xué)生基礎(chǔ)差、底子薄,數(shù)學(xué)運算能力,分析問題、解決問題的能力,邏輯推理能力,思維能力都比較弱,所以在設(shè)計課的時候往往要多作鋪墊,掃清他們學(xué)習(xí)上的障礙,保護他們學(xué)習(xí)的積極性,增強學(xué)習(xí)的主動 。在教法上,主要采用探究性教學(xué)法和啟發(fā)式教學(xué)法。以啟發(fā)、引導(dǎo)為主,采用設(shè)疑的形式,逐步讓學(xué)生進行探究性的學(xué)習(xí)
五、教學(xué)重點及難點(說明本課題的重難點)
基于以上分析,我將本課的教學(xué)重點、難點確定為: ①重點:橢圓定義和標準方程 ②難點:橢圓的標準方程的推導(dǎo)。
六、教學(xué)過程(這一部分是該教學(xué)設(shè)計方案的關(guān)鍵所在,在這一部分,要說明教學(xué)的環(huán)節(jié)及所需的資源支持、具體的活動及其設(shè)計意圖以及那些需要特別說明的教師引導(dǎo)語)
一. 創(chuàng)設(shè)問題情境:
情境1:給出橢圓的一些實物圖片:天體運行圖(月亮繞地球,地球繞太陽旋轉(zhuǎn))、汽車油罐的橫截面,立體幾何中圓的直觀圖?
實物:圓柱形杯傾斜后杯中水的形狀。
情境2:校園內(nèi)一些橢圓形小花壇
問題 學(xué)校準備在一塊長3米、寬1米的矩形空地上建造一個橢圓形花園,要盡可能多地利用這塊空地,請問:如何畫這個花園的邊界線?
。▽W(xué)生現(xiàn)在還不能解決,只有通過今天這節(jié)課的學(xué)習(xí)才能解決這個問題)
這是實際生活中圖形,數(shù)學(xué)中我們也遇到這一類圖形:歸結(jié)為到兩定點距離之和為定值的點的軌跡問題。如何用現(xiàn)有的工具畫出圖形?(啟發(fā)學(xué)生用畫圓的方法試著畫圖)
教師與學(xué)生一起找出上述問題的解決方案,并一同用給的工具畫出圖形,與上述圖形相似——橢圓
問題情境的創(chuàng)設(shè)應(yīng)有利于激發(fā)學(xué)生的求知欲。為了學(xué)習(xí)橢圓的定義,我設(shè)計如下兩個學(xué)生熟悉的情境:
通過情境1,讓學(xué)生感受到橢圓的存在非常普遍。小到日常生活用品,大到建筑物的外形,天體的運行軌道。
通過情境2,讓學(xué)生主動思考如何畫橢圓及橢圓的定義。
通過問題,要求學(xué)生以小組為單位進行實驗、觀察、猜想,激發(fā)學(xué)生探索的欲望和濃厚的學(xué)習(xí)興趣,使學(xué)生的主體地位得到體現(xiàn)。
二. 探求橢圓方程
如何選取坐標系?
方案1:以一個定點為原點,兩定點的連線為X軸
回顧圓的方程的建立過程,首先是做什么? (提問學(xué)生) 如何選擇適當?shù)淖鴺讼祦斫E圓的方程呢?
學(xué)會建立適當?shù)淖鴺讼,?gòu)造數(shù)與形的橋梁,學(xué)會用解析的方法來解決問題,滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
方案2:以兩定點的連線為X軸,其垂直平分線為Y軸
學(xué)生可能有很多種建系方法,根據(jù)課堂的實際情況進行處理。不能否定學(xué)生的方法,讓學(xué)生自己討論那種建系方法更為合適,我想學(xué)生通過這些活動能夠建立幾種常見的坐標系,并列出相應(yīng)的代數(shù)方程。我認為這樣有利于培養(yǎng)學(xué)生的動手實驗,分析比較,相互協(xié)作等能力。讓學(xué)生體驗到知識的產(chǎn)生過程。
三. 標準方程比較
。ㄗ寣W(xué)生討論,歸的標準方程有何異同) (1)相同點納出這兩種形式的標準方程有何異同)
。1)相同點
、俜匠讨衳,y表示橢圓上任意一點 ②關(guān)于x,y的二元二次方程;
、劢裹c位置的判定:焦點在較大分坐標;
(2)不同點
、俜匠绦问 ②圖形 ③焦點坐標
由于化簡兩個根式的方程的方法特殊,難度較大,估計學(xué)生容易想到直接平方,這時可讓學(xué)生預(yù)測這樣化簡的難度,從而確定移項平方可以簡化計算。為此,我首先啟發(fā)學(xué)生如何去掉根號較好,讓學(xué)生動手比較,最后得出移項平方化簡方程比較簡單,這樣有利于培養(yǎng)學(xué)生的分析比較能力。
七、教學(xué)評價設(shè)計(創(chuàng)建量規(guī),向?qū)W生展示他們將被如何評價(來自教師和小組其他成員的評價)。也可以創(chuàng)建一個自我評價表,這樣學(xué)生可以用它對自己的學(xué)習(xí)進行評價)
橢圓方程的化簡是學(xué)生從未經(jīng)歷的問題,方程的推導(dǎo)過程采用學(xué)生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學(xué)生主體參與橢圓方程建立的具體過程,使學(xué)生真正了解橢圓標準方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學(xué)生體會成功的快樂,提高學(xué)生的數(shù)學(xué)探究能力,培養(yǎng)學(xué)生獨立主動獲取知識的能力
八、板書設(shè)計(本節(jié)課的主板書)
一.定義
二. 標準方程比較
1)相同點 ①方程中x,y表示橢圓上任意一點的坐標; ②關(guān)于x,y的二元二次方程; ③焦點位置的判定:焦點在較大分母對應(yīng)的變量的坐標軸上
2)不同點 ①方程形式 ②圖形 ③焦點坐標
九.教學(xué)反思
橢圓是圓錐曲線中重要的一種,本節(jié)內(nèi)容的學(xué)習(xí)是后繼學(xué)習(xí)其它圓錐曲線的基礎(chǔ),坐標法是解析幾何中的重要數(shù)學(xué)方法,橢圓方程的推導(dǎo)是利用坐標法求曲線方程的很好應(yīng)用實例。本節(jié)課內(nèi)容的學(xué)習(xí)能很好地在課堂教學(xué)中展現(xiàn)新課程的理念,主要采用學(xué)生自主探究學(xué)習(xí)的方式,使培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力的教學(xué)思想貫穿于本節(jié)課教學(xué)設(shè)計的始終。
橢圓是生活中常見的圖形,通過實驗演示,創(chuàng)設(shè)生動而直觀的情境,使學(xué)生親身體會橢圓與生活聯(lián)系,有助于激發(fā)學(xué)生對橢圓知識的學(xué)習(xí)興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學(xué)生動手畫橢圓并合作探究的學(xué)習(xí)方式,讓學(xué)生親身經(jīng)歷橢圓概念形成的數(shù)學(xué)化過程,有利于培養(yǎng)學(xué)生觀察分析、抽象概括的能力。
【橢圓及其標準方程的教案設(shè)計】相關(guān)文章:
《橢圓的標準方程》教案04-25
教案二:<<2.2.1 橢圓及其標準方程>> 教案04-25
拋物線及其標準方程的教學(xué)反思(通用5篇)11-10
受攝橢圓軌道線性相對動力學(xué)方程及其運動有界性條件04-30
標準橢圓封頭下料尺寸表04-30
含有 Sobolev-Hardy 臨界指標的奇異橢圓方程04-30
橢圓型方程奇攝動問題的廣義解04-27
具有特征矩陣的退化橢圓方程外邊值問題04-26
攝動橢圓參考軌道的相對運動狀態(tài)轉(zhuǎn)移方程04-26
論評價及其標準04-27