- 相關(guān)推薦
數(shù)學(xué)算法
1、速算一:快心算速算一:快心算---真正與小學(xué)數(shù)學(xué)教材同步的教學(xué)模式快心算是目前唯一不借助任何實(shí)物進(jìn)行簡(jiǎn)便運(yùn)算的方法,既不用練算盤,也不用扳手指,更不用算盤。
快心算教材的編排和難度是緊扣小學(xué)數(shù)學(xué)大綱并于初中代數(shù)接軌,比小學(xué)課本更簡(jiǎn)便的一門速算。簡(jiǎn)化了筆算,加強(qiáng)了口算。簡(jiǎn)單,易學(xué),趣味性強(qiáng),小學(xué)生通過(guò)短時(shí)間培訓(xùn)后,多位數(shù)加,減,乘,除,不列豎式,直接可以寫出答數(shù)。
快心算的奇特效果
三年級(jí)以上任意多位數(shù)的乘除加減全部學(xué)完.
二年級(jí)多位數(shù)的加減,兩位數(shù)的乘法和一位數(shù)的除法.
一年級(jí),多位數(shù)的加減.
幼兒園中,大班學(xué)會(huì)多位數(shù)加減法為學(xué)齡前幼兒量身定做的,提前渡過(guò)小學(xué)口算這一關(guān)。小孩在幼兒園學(xué)習(xí)快心算對(duì)以后上小學(xué)有幫助
孩子們做作業(yè)不再用草稿紙,看算直接寫答案.
快心算"有別于"珠心算""手腦算"。西安教師牛宏偉發(fā)明的快心算,(牛宏偉老師獲得中華人民共和國(guó)國(guó)家知識(shí)產(chǎn)權(quán)局頒發(fā)的專利證書。專利號(hào);ZL 2008301174275.受中華人民共和國(guó)專利法的專利保護(hù)。)主要是通過(guò)教材中的一定規(guī)則,對(duì)幼兒進(jìn)行加減乘除快速運(yùn)算訓(xùn)練。"快心算"有助于提高孩子思維和行為的條理性、邏輯性以及靈敏性,鍛煉孩子眼、手、腦的同步快速反應(yīng),計(jì)算方法和中小學(xué)數(shù)學(xué)具有一致性,所以很受幼兒家長(zhǎng)的歡迎。
快心算真正與小學(xué)數(shù)學(xué)教材同步的教學(xué)模式:
1:會(huì)算法--筆算訓(xùn)練,現(xiàn)今我國(guó)的教育體制是應(yīng)試教育,檢驗(yàn)學(xué)生的標(biāo)準(zhǔn)是考試成績(jī)單,那么學(xué)生的主要任務(wù)就是應(yīng)試,答題,答題要用筆寫,筆算訓(xùn)練是教學(xué)的主線。與小學(xué)數(shù)學(xué)計(jì)算方法一致,不運(yùn)用任何實(shí)物計(jì)算,無(wú)論橫式,豎式,連加連減都可運(yùn)用自如,用筆做計(jì)算是啟動(dòng)智慧快車的一把金鑰匙。
2:明算理-算理拼玩。會(huì)用筆寫題,不但要使孩子會(huì)算法,還要讓孩子明白算理。使孩子在拼玩中理解計(jì)算的算理,突破數(shù)的計(jì)算。孩子是在理解的基礎(chǔ)上完成的計(jì)算。
3:練速度--速度訓(xùn)練,會(huì)用筆算題還遠(yuǎn)遠(yuǎn)不夠,小學(xué)的口算要有時(shí)間限定,是否達(dá)標(biāo)要用時(shí)間說(shuō)話,也就是會(huì)算題還不夠,主要還是要提速。
4:?jiǎn)⒅腔?-智力體操,不單純地學(xué)習(xí)計(jì)算,著重培養(yǎng)孩子的數(shù)學(xué)思維能力,全面激發(fā)左右腦潛能,開發(fā)全腦。經(jīng)過(guò)快心算的訓(xùn)練,學(xué)前孩子可以深刻的理解數(shù)學(xué)的本質(zhì)(包含),數(shù)的意義(基數(shù),序數(shù),和包含),數(shù)的運(yùn)算機(jī)理(同數(shù)位的數(shù)的加減,)數(shù)學(xué)邏輯運(yùn)算的方式,使孩子掌握處理復(fù)雜信息分解方法,發(fā)散思維,逆向思維得到了發(fā)展。孩子得到一個(gè)反應(yīng)敏銳的大腦。
2、速算二:袖里吞金速算二:央視熱播劇《走西口》里豆花多次夸田青會(huì)"袖里吞金"速算。(就是計(jì)算不借助算盤)!那究竟什么是袖里吞金速算法?
袖里吞金就是一種速算的方法,是我國(guó)古代商人發(fā)明的一種數(shù)值計(jì)算方法,古代人的衣服袖子肥大,計(jì)算時(shí)只見兩手在袖中進(jìn)行,固叫袖里吞金速算。這種計(jì)算方法過(guò)去曾有一段歌謠流傳;"袖里吞金妙如仙,靈指一動(dòng)數(shù)目全,無(wú)價(jià)之寶學(xué)到手,不遇知音不與傳"。
袖里吞金速算法就是一種民間的手心算的方法,中國(guó)的商賈數(shù)學(xué),晉商一面走路一面算賬,十個(gè)手指就是一把算盤,所以山西人平時(shí)總將一雙手吞在袖里,怕泄露了他的經(jīng)濟(jì)秘密。過(guò)去人們?yōu)榱酥\生不會(huì)輕易將這種算法的秘笈外傳,一種在中華大地上流傳了至少400多年名叫"袖里吞金"的速算方式也瀕臨失傳。
根據(jù)有關(guān)資料顯示,公元1573年,一位名叫徐心魯?shù)膶W(xué)者,寫了一本《珠盤算法》,最早描述了袖里吞金速算;公元1592年,一位名叫程大位的數(shù)學(xué)家,出版了一本《算法統(tǒng)籌》,首次對(duì)袖里吞金進(jìn)行了詳細(xì)描述。后來(lái)商人尤其是晉商,推廣使用了這門古代的速算方法。"袖里吞金"算法是山西票號(hào)秘不外傳的一門絕技,西安的一些大商家大掌柜的都會(huì)這種速算法。
袖里吞金速算表示數(shù)的方法是以左手五指設(shè)點(diǎn)作為數(shù)碼盤,每個(gè)手指表示一位數(shù),五個(gè)手指可表示個(gè)、十、百、千、萬(wàn)五位數(shù)字。每個(gè)手指的上、中、下三節(jié)分別表示1-9個(gè)數(shù)。每節(jié)上布置著三個(gè)數(shù)碼,排列的規(guī)則是分左、中、右三列,手指左邊逆上(從下到上)排列1、2、3:手指中間順下(從上到下)排列4、5、6:手指右邊逆上排列7、8、9。袖里吞金的計(jì)算方法是采用心算辦法利用大腦形象再現(xiàn)指算計(jì)算過(guò)程而求出結(jié)果的方法。它把左手當(dāng)作一架五檔的虛算盤,用右手五指點(diǎn)按這個(gè)虛算盤來(lái)進(jìn)行計(jì)算。記數(shù)時(shí)要用右手的手指點(diǎn)左手相對(duì)應(yīng)的手指。其明確分工是:右手拇指/專點(diǎn)左手拇指,右手食指專點(diǎn)左手食指,右手中指專點(diǎn)左手中指,右手無(wú)名指專點(diǎn)左手無(wú)名指,右手小指專點(diǎn)左手小指。對(duì)應(yīng)專業(yè)分工各不相擾。哪個(gè)手指點(diǎn)按數(shù),哪個(gè)手指就伸開,手指不點(diǎn)按數(shù)時(shí)彎屈,表示0。它不借助于任何計(jì)算工具,不列運(yùn)算程序,只需兩手輕輕一合,便知答數(shù),可進(jìn)行十萬(wàn)位以內(nèi)的任意數(shù)的加減乘除四則運(yùn)算。
袖里吞金'速算,其運(yùn)算速度(當(dāng)然要經(jīng)過(guò)一定時(shí)間的練習(xí)),加減可與電子計(jì)算機(jī)相媲美,乘除比珠算要快,平方、開平方比筆算快得多。雖然對(duì)于初學(xué)者來(lái)說(shuō),用'袖里吞金'計(jì)算簡(jiǎn)單的數(shù)據(jù)不如計(jì)算器快,但熟練掌握這項(xiàng)技能后,計(jì)算速度要超過(guò)計(jì)算器。曾經(jīng)有人專門計(jì)算過(guò)'袖里吞金'算法的速度,一個(gè)熟練掌握這門技能的人,得數(shù)結(jié)果為3到4位數(shù)的乘法,大約為2秒鐘的時(shí)間;結(jié)果為5到7位數(shù)的,約為7秒鐘左右;
袖里吞金速算法雖然脫胎于珠算,但與珠算相比,不需要任何的工具,只要使用一雙手就可以了。由于"袖里吞金"不用工具、不用眼看等特點(diǎn),非常適合在野外作業(yè)時(shí)使用,在黑暗中也可以使用,尤其是對(duì)于盲人,更可以通過(guò)這種算法來(lái)解決一些問(wèn)題。"俗話說(shuō)'十指連心',運(yùn)用手指來(lái)訓(xùn)練計(jì)算技能,可以活動(dòng)筋骨,心靈手巧,手巧促心靈,提高腦力。"
現(xiàn)如今,商人們不用袖里吞金速算法算賬了。但是,一些教育工作者,已將這種方法應(yīng)運(yùn)于兒童早教領(lǐng)域。西安牛宏偉老師從事教育工作多年,曾對(duì)袖里吞金進(jìn)行改進(jìn)。使其更簡(jiǎn)單易學(xué),方便快捷。先后教過(guò)幾千名兒童學(xué)習(xí)改進(jìn)型"袖里吞金"。它在啟發(fā)兒童智力方面,有著良好效果。袖里吞金--開發(fā)孩子的全腦。袖里吞金不是特異功能,而是一種科學(xué)的教學(xué)方法。它比珠心算還神奇,利用手腦并用來(lái)完成加減乘除的快速計(jì)算,速度驚人,準(zhǔn)確率高。它有效地開發(fā)了學(xué)生的大腦,激發(fā)了學(xué)生的潛能。革新袖里吞金速算--全腦手心算---已于2009年5月6日由牛宏偉老師獲得中華人民共和國(guó)國(guó)家知識(shí)產(chǎn)權(quán)局頒發(fā)的專利證書。專利號(hào);ZL 2008301164377.。受中華人民共和國(guó)專利法的專利保護(hù)。
袖里吞金速算法減少筆算列算式復(fù)雜的運(yùn)算過(guò)程,省時(shí)省力,提高學(xué)生計(jì)算速度。能算十萬(wàn)位以內(nèi)任意數(shù)的加減乘除四則算。通過(guò)手腦并用來(lái)快速完成加減乘除計(jì)算,準(zhǔn)確率高。經(jīng)過(guò)兩三個(gè)月的學(xué)習(xí),像64983+68496、78×63這樣的計(jì)算,低年級(jí)小朋友們兩手一合,答案便能脫口而出。
革新袖里吞金速算法---全腦手心算則是兒童用記在手,算在腦的方法,不用任何計(jì)算工具,不列豎式,兩手一合,便知答案。這種方法是:將左手的骨節(jié)橫紋模擬算盤上的算珠檔位來(lái)計(jì)數(shù),把左手作為一架"五檔小算盤"用右手來(lái)拔珠計(jì)算,從而使人的雙手成為一個(gè)完美的計(jì)算器。學(xué)生在計(jì)算過(guò)程中可以運(yùn)算出十萬(wàn)位的結(jié)果,通俗易懂,簡(jiǎn)單易學(xué),真正達(dá)到訓(xùn)練孩子的腦,心,手,提高孩子的運(yùn)算能力,記憶力和自信心。
3、速算三:蒙氏速算速算三:蒙氏速算是在蒙氏數(shù)學(xué)基礎(chǔ)上的發(fā)展與創(chuàng)新,蒙氏數(shù)學(xué)相對(duì)低幼一點(diǎn),而"蒙氏速算"是針對(duì)學(xué)前班孩子的,最大優(yōu)勢(shì)就是幼小銜接好,與小學(xué)數(shù)學(xué)計(jì)算方法一致。適合幼兒園中班大班小朋友及小學(xué)一二年級(jí)學(xué)生學(xué)習(xí)。
蒙氏速算能使幼兒在拼玩中,深刻理解數(shù)字計(jì)算的根本原理。從而輕松突破孩子的數(shù)學(xué)計(jì)算關(guān),數(shù)字的計(jì)算蘊(yùn)藏著包含,分類,分解合并,歸納,對(duì)稱邏輯推理等抽象思維,而學(xué)前孩子只會(huì)圖象思維,不會(huì)理解和推理,所以學(xué)前孩子學(xué)習(xí)計(jì)算是非常困難的。蒙氏速算卡的誕生使數(shù)學(xué)計(jì)算的原理也能以圖象的形式顯示在孩子面前。孩子理解了算理了,自然計(jì)算也就簡(jiǎn)單了。5和6兩個(gè)數(shù)一拼,不僅答案顯示出來(lái),而且還能顯示為什么要進(jìn)位,這就是西安牛宏偉老師最新的發(fā)明專利,蒙氏速算(專利號(hào):ZL 2008301164396),它的一張卡片就包含著數(shù)字的寫法,數(shù)的形狀,數(shù)的量(基數(shù))和數(shù)的包含4個(gè)信息。從而輕松帶領(lǐng)孩子進(jìn)入有趣的數(shù)字王國(guó)。
蒙氏速算--算理簡(jiǎn)捷,與國(guó)家九年義務(wù)教育課程標(biāo)準(zhǔn)完全接軌,使4.5歲兒童在一個(gè)學(xué)期內(nèi),可學(xué)會(huì)萬(wàn)以內(nèi)加減法的運(yùn)算.蒙氏速算從最基本的數(shù)概念入手一環(huán)扣一環(huán),與小學(xué)數(shù)學(xué)計(jì)算方法一致。但教學(xué)方法簡(jiǎn)單,學(xué)生易學(xué),易接受。蒙氏速算輕松快樂的教學(xué),利用卡通,實(shí)物等數(shù)字形象,把抽象枯燥的數(shù)學(xué)概念形象化,把復(fù)雜的問(wèn)題簡(jiǎn)單化。蒙氏速算是幼小銜接最佳數(shù)學(xué)課程,提高少兒數(shù)學(xué)素質(zhì)的新方法。
4、速算四:特殊數(shù)的速算速算四:有條件的特殊數(shù)的速算
兩位數(shù)乘法速算技巧
原理:設(shè)兩位數(shù)分別為10A+B,10C+D,其積為S,根據(jù)多項(xiàng)式展開:
S=(10A+B)×(10C+D)=10A×10C+B×10C+10A×D+B×D,而所謂速算,就是根據(jù)其中一些相等或互補(bǔ)(相加為十)的關(guān)系簡(jiǎn)化上式,從而快速得出結(jié)果。
注:下文中"--"代表十位和個(gè)位,因?yàn)閮晌粩?shù)的十位相乘得數(shù)的后面是兩個(gè)零,請(qǐng)大家不要忘了,前積就是前兩位,后積是后兩位,中積為中間兩位,滿十前一,不足補(bǔ)零.
A.乘法速算
一.前數(shù)相同的:
1.1.十位是1,個(gè)位互補(bǔ),即A=C=1,B+D=10,S=(10+B+D)×10+A×B
方法:百位為二,個(gè)位相乘,得數(shù)為后積,滿十前一。
例:13×17 13+7=2--("-"在不熟練的時(shí)候作為助記符,熟練后就可以不使用了)
3×7=21
---
221
即13×17=221 1.2.十位是1,個(gè)位不互補(bǔ),即A=C=1,B+D≠10,S=(10+B+D)×10+A×B
方法:乘數(shù)的個(gè)位與被乘數(shù)相加,得數(shù)為前積,兩數(shù)的個(gè)位相乘,得數(shù)為后積,滿十前一。
例:15×17 15+7=22-("-"在不熟練的時(shí)候作為助記符,熟練后就可以不使用了)
5×7=35
---
255
即15×17=255 1.3.十位相同,個(gè)位互補(bǔ),即A=C,B+D=10,S=A×(A+1)×10+A×B
方法:十位數(shù)加1,得出的和與十位數(shù)相乘,得數(shù)為前積,個(gè)位數(shù)相乘,得數(shù)為后積
例:56×54
(5+1)×5=30--
6×4=24
--
3024 1.4.十位相同,個(gè)位不互補(bǔ),即A=C,B+D≠10,S=A×(A+1)×10+A×B
方法:先頭加一再乘頭兩,得數(shù)為前積,尾乘尾,的數(shù)為后積,乘數(shù)相加,看比十大幾或小幾,大幾就加幾個(gè)乘數(shù)的頭乘十,反之亦然
例:67×64
(6+1)×6=42 7×4=28 7+4=11 11-10=1 4228+60=4288
--
4288
方法2:兩首位相乘(即求首位的平方),得數(shù)作為前積,兩尾數(shù)的和與首位相乘,得數(shù)作為中積,滿十進(jìn)一,兩尾數(shù)相乘,得數(shù)作為后積。
例:67×64 6×6=36--
(4+7)×6=66-
4×7=28
--
4288
二、后數(shù)相同的:
2.1.個(gè)位是1,十位互補(bǔ)即B=D=1,A+C=10 S=10A×10C+101
方法:十位與十位相乘,得數(shù)為前積,加上101.。
--8×2=16--
101
---
1701 2.2.不是很簡(jiǎn)便個(gè)位是1,十位不互補(bǔ)即B=D=1,A+C≠10 S=10A×10C+10C+10A+1
方法:十位數(shù)乘積,加上十位數(shù)之和為前積,個(gè)位為1.。
例:71×91 70×90=63--
70+90=16-
1
--
6461 2.3個(gè)位是5,十位互補(bǔ)即B=D=5,A+C=10 S=10A×10C+25
方法:十位數(shù)乘積,加上十位數(shù)之和為前積,加上25。
例:35×75 3×7+5=26--
25
--
2625 2.4不是很簡(jiǎn)便個(gè)位是5,十位不互補(bǔ)即B=D=5,A+C≠10 S=10A×10C+525
方法:兩首位相乘(即求首位的平方),得數(shù)作為前積,兩十位數(shù)的和與個(gè)位相乘,得數(shù)作為中積,滿十進(jìn)一,兩尾數(shù)相乘,得數(shù)作為后積。
例:75×95 7×9=63--
(7+9)×5=80-
25
--
7125 2.5.個(gè)位相同,十位互補(bǔ)即B=D,A+C=10 S=10A×10C+B100+B2
方法:十位與十位相乘加上個(gè)位,得數(shù)為前積,加上個(gè)位平方。
例:86×26 8×2+6=22--
36
---
2236 2.6.個(gè)位相同,十位非互補(bǔ)
方法:十位與十位相乘加上個(gè)位,得數(shù)為前積,加上個(gè)位平方,再看看十位相加比10大幾或小幾,大幾就加幾個(gè)個(gè)位乘十,小幾反之亦然
例:73×43 7×4+3=31 9
7+4=11 3109+30=3139
---
3139 2.7.個(gè)位相同,十位非互補(bǔ)速算法2
方法:頭乘頭,尾平方,再加上頭加尾的結(jié)果乘尾再乘10
例:73×43 7×4=28 9
2809+(7+4)×3×10=2809+11×30=2809+330=3139
---
3139
三、特殊類型的:
3.1、一因數(shù)數(shù)首尾相同,一因數(shù)十位與個(gè)位互補(bǔ)的兩位數(shù)相乘。
方法:互補(bǔ)的那個(gè)數(shù)首位加1,得出的和與被乘數(shù)首位相乘,得數(shù)為前積,兩尾數(shù)相乘,得數(shù)為后積,沒有十位用0補(bǔ)。
例:66×37
(3+1)×6=24--
6×7=42
--
2442 3.2、一因數(shù)數(shù)首尾相同,一因數(shù)十位與個(gè)位非互補(bǔ)的兩位數(shù)相乘。
方法:雜亂的那個(gè)數(shù)首位加1,得出的和與被乘數(shù)首位相乘,得數(shù)為前積,兩尾數(shù)相乘,得數(shù)為后積,沒有十位用0補(bǔ),再看看非互補(bǔ)的因數(shù)相加比10大幾或小幾,大幾就加幾個(gè)相同數(shù)的數(shù)字乘十,反之亦然
例:38×44
(3+1)*4=12 8*4=32 1632 3+8=11 11-10=1 1632+40=1672
--
1672 3.3、一因數(shù)數(shù)首尾互補(bǔ),一因數(shù)十位與個(gè)位不相同的兩位數(shù)相乘。
方法:乘數(shù)首位加1,得出的和與被乘數(shù)首位相乘,得數(shù)為前積,兩尾數(shù)相乘,得數(shù)為后積,沒有十位用0補(bǔ),再看看不相同的因數(shù)尾比頭大幾或小幾,大幾就加幾個(gè)互補(bǔ)數(shù)的頭乘十,反之亦然
例:46×75
(4+1)*7=35 6*5=30 5-7=-2 2*4=8 3530-80=3450
--
3450 3.4、一因數(shù)數(shù)首比尾小一,一因數(shù)十位與個(gè)位相加等于9的兩位數(shù)相乘。
方法:湊9的數(shù)首位加1乘以首數(shù)的補(bǔ)數(shù),得數(shù)為前積,首比尾小一的數(shù)的尾數(shù)的補(bǔ)數(shù)乘以湊9的數(shù)首位加1為后積,沒有十位用0補(bǔ)。
例:56×36 10-6=4 3+1=4 5*4=20 4*4=16
---
2016 3.5、兩因數(shù)數(shù)首不同,尾互補(bǔ)的兩位數(shù)相乘。
方法:確定乘數(shù)與被乘數(shù),反之亦然。被乘數(shù)頭加一與乘數(shù)頭相乘,得數(shù)為前積,尾乘尾,得數(shù)為后積。再看看被乘數(shù)的頭比乘數(shù)的頭大幾或小幾,大幾就加幾個(gè)乘數(shù)的尾乘十,反之亦然
例:74×56
(7+1)*5=40 4*6=24 7-5=2 2*6=12 12*10=120 4024+120=4144
---
4144 3.6、兩因數(shù)首尾差一,尾數(shù)互補(bǔ)的算法
方法:不用向第五個(gè)那么麻煩了,取大的頭平方減一,得數(shù)為前積,大數(shù)的尾平方的補(bǔ)整百數(shù)為后積
例:24×36 32 3*3-1=8 6^2=36 100-36=64
---
864 3.7、近100的兩位數(shù)算法
方法:確定乘數(shù)與被乘數(shù),反之亦然。再用被乘數(shù)減去乘數(shù)補(bǔ)數(shù),得數(shù)為前積,再把兩數(shù)補(bǔ)數(shù)相乘,得數(shù)為后積(未滿10補(bǔ)零,滿百進(jìn)一)
例:93×91 100-91=9 93-9=84 100-93=7 7*9=63
---
8463 B、平方速算
一、求11~19的平方
同上1.2,乘數(shù)的個(gè)位與被乘數(shù)相加,得數(shù)為前積,兩數(shù)的個(gè)位相乘,得數(shù)為后積,滿十前一
例:17×17 17+7=24-
7×7=49
---
289
三、個(gè)位是5的兩位數(shù)的平方
同上1.3,十位加1乘以十位,在得數(shù)的后面接上25。
例:35×35
(3+1)×3=12--
25
--
1225
四、十位是5的兩位數(shù)的平方
同上2.5,個(gè)位加25,在得數(shù)的后面接上個(gè)位平方。
例:53×53 25+3=28--
3×3=9
--
2809
四、21~50的兩位數(shù)的平方
求25~50之間的兩數(shù)的平方時(shí),記住1~25的平方就簡(jiǎn)單了,11~19參照第一條,下面四個(gè)數(shù)據(jù)要牢記:
21×21=441 22×22=484 23×23=529 24×24=576
求25~50的兩位數(shù)的平方,用底數(shù)減去25,得數(shù)為前積,50減去底數(shù)所得的差的平方作為后積,滿百進(jìn)1,沒有十位補(bǔ)0。
例:37×37 37-25=12--
(50-37)^2=169
--
1369 C、加減法
一、補(bǔ)數(shù)的概念與應(yīng)用
補(bǔ)數(shù)的概念:補(bǔ)數(shù)是指從10、100、1000…中減去某一數(shù)后所剩下的數(shù)。
例如10減去9等于1,因此9的補(bǔ)數(shù)是1,反過(guò)來(lái),1的補(bǔ)數(shù)是9。
補(bǔ)數(shù)的應(yīng)用:在速算方法中將很常用到補(bǔ)數(shù)。例如求兩個(gè)接近100的數(shù)的乘法或除數(shù),將看起來(lái)復(fù)雜的減法運(yùn)算轉(zhuǎn)為簡(jiǎn)單的加法運(yùn)算等等。
D、除法速算
一、某數(shù)除以5、25、125時(shí)
1、被除數(shù)÷5
=被除數(shù)÷(10÷2)
=被除數(shù)÷10×2
=被除數(shù)×2÷10 2、被除數(shù)÷25
=被除數(shù)×4÷100
=被除數(shù)×2×2÷100 3、被除數(shù)÷125
=被除數(shù)×8÷1000
=被除數(shù)×2×2×2÷1000
在加、減、乘、除四則運(yùn)算中除法是最麻煩的一項(xiàng),即使使用速算法很多時(shí)候也要加上筆算才能更快更準(zhǔn)地算出答案。因本人水平所限,上面的算法不一定是最好的心算法
[編輯本段]
5、速算五:史豐收速算速算五:史豐收速算
由速算大師史豐收經(jīng)過(guò)10年鉆研發(fā)明的快速計(jì)算法,是直接憑大腦進(jìn)行運(yùn)算的方法,又稱為快速心算、快速腦算。這套方法打破人類幾千年從低位算起的傳統(tǒng)方法,運(yùn)用進(jìn)位規(guī)律,總結(jié)26句口訣,由高位算起,再配合指算,加快計(jì)算速度,能瞬間運(yùn)算出正確結(jié)果,協(xié)助人類開發(fā)腦力,加強(qiáng)思維、分析、判斷和解決問(wèn)題的能力,是當(dāng)代應(yīng)用數(shù)學(xué)的一大創(chuàng)舉。
這一套計(jì)算法,1990年由國(guó)家正式命名為"史豐收速算法",現(xiàn)已編入中國(guó)九年制義務(wù)教育《現(xiàn)代小學(xué)數(shù)學(xué)》課本。聯(lián)合國(guó)教科文組織譽(yù)之為教育科學(xué)史上的奇跡,應(yīng)向全世界推廣。
史豐收速算法的主要特點(diǎn)如下:
⊙從高位算起,由左至右
⊙不用計(jì)算工具
⊙不列計(jì)算程序
⊙看見算式直接報(bào)出正確答案
⊙可以運(yùn)用在多位數(shù)據(jù)的加減乘除以及乘方、開方、三角函數(shù)、對(duì)數(shù)等數(shù)學(xué)運(yùn)算上
速算法演練實(shí)例
Example of Rapid Calculation in Practice
○史豐收速算法易學(xué)易用,算法是從高位數(shù)算起,記著史教授總結(jié)了的26句口訣(這些口訣不需死背,而是合乎科學(xué)規(guī)律,相互連系),用來(lái)表示一位數(shù)乘多位數(shù)的進(jìn)位規(guī)律,掌握了這些口訣和一些具體法則,就能快速進(jìn)行加、減、乘、除、乘方、開方、分?jǐn)?shù)、函數(shù)、對(duì)數(shù)…等運(yùn)算。
□本文針對(duì)乘法舉例說(shuō)明
○速算法和傳統(tǒng)乘法一樣,均需逐位地處理乘數(shù)的每位數(shù)字,我們把被乘數(shù)中正在處理的那個(gè)數(shù)位稱為「本位」,而從本位右側(cè)第一位到最末位所表示的數(shù)稱「后位數(shù)」。本位被乘以后,只取乘積的個(gè)位數(shù),此即「本個(gè)」,而本位的后位數(shù)與乘數(shù)相乘后要進(jìn)位的數(shù)就是「后進(jìn)」。
○乘積的每位數(shù)是由「本個(gè)加后進(jìn)」和的個(gè)位數(shù)即--
□本位積=(本個(gè)十后進(jìn))之和的個(gè)位數(shù)
○那么我們演算時(shí)要由左而右地逐位求本個(gè)與后進(jìn),然后相加再取其個(gè)位數(shù),F(xiàn)在,就以右例具體說(shuō)明演算時(shí)的思維活動(dòng)。
(例題)被乘數(shù)首位前補(bǔ)0,列出算式:
7536×2=15072
乘數(shù)為2的進(jìn)位規(guī)律是「2滿5進(jìn)1」
7×2本個(gè)4,后位5,滿5進(jìn)1,4+1得5 5×2本個(gè)0,后位3不進(jìn),得0 3×2本個(gè)6,后位6,滿5進(jìn)1,6+1得7 6×2本個(gè)2,無(wú)后位,得2
在此我們只舉最簡(jiǎn)單的例子供讀者參考,至于乘3、4…至乘9也均有一定的進(jìn)位規(guī)律,限于篇幅,在此未能一一羅列。
「史豐收速算法」即以這些進(jìn)位規(guī)律為基礎(chǔ),逐步發(fā)展而成,只要運(yùn)用熟練,舉凡加減乘除四則多位數(shù)運(yùn)算,均可達(dá)到快速準(zhǔn)確的目的。
演練實(shí)例二
□掌握訣竅人腦勝電腦
史豐收速算法并不復(fù)雜,比傳統(tǒng)計(jì)算法更易學(xué)、更快速、更準(zhǔn)確,史豐收教授說(shuō)一般人只要用心學(xué)習(xí)一個(gè)月,即可掌握竅門。
速算法對(duì)于會(huì)計(jì)師、經(jīng)貿(mào)人員、科學(xué)家們而言,可以提高計(jì)算速度,增加工作效益;對(duì)學(xué)童而言、可以開發(fā)智力、活用頭腦、幫助數(shù)理能力的增強(qiáng)。
【數(shù)學(xué)算法】相關(guān)文章:
算法崗位職責(zé)03-15
《加、減法的簡(jiǎn)便算法》教案03-05
算理和算法概述10-26
圖像算法工程師的職責(zé)04-23
通信算法工程師的職責(zé)03-01
線源擴(kuò)散模型的建立及算法實(shí)現(xiàn)05-02
離職率如何算,離職率的算法01-06
算法工程師的主要職責(zé)04-10
視覺算法工程師的崗位職責(zé)04-18